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Abstract

Dynamically typed languages promote flexibility and agile
programming. Still, their lack of type information hampers
program understanding and limits the possibilities of pro-
gramming tools such as automatic refactorings, automated
testing framework, and program navigation. In this paper
we present an extensible constraint-based type inference al-
gorithm for object-oriented dynamic languages, focused on
providing type information which is useful for program-
ming tools. The algorithm is able to infer types for small
industrial-like programs, including advanced features like
blocks and generic types. Although it is still an early ver-
sion, its highly extensible and configurable structure make
our solution a useful test bench for further investigation.

Categories and Subject Descriptors F-3.3 [Logics and
meanings of programs]: Studies of Program Constructs

General Terms type inference, dynamic languages, con-
crete types, abstract types

Keywords dynamic languages, type inference, ide, tools,
automatic refactorings, type annotations, Smalltalk, Pharo.

1. Introduction

Dynamically-typed languages have many advantages, such
as a strong flexibility, reduced development time and code
size [Tra09]. Still their lack of type information hampers
program understanding and limits the possibilities of pro-
gramming tools such as an automated testing framework
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[Ahm13, GKSO05], program navigation and refactorings
[Opd92] or smart suggestions [RL13]. In addition type in-
formation improves programmer understanding by showing
method parameter type, or the messages that can safely be
sent to a variable. Such properties are important when a pro-
grammer should join in an existing team with a large code
base to maintain. The same difficulties appear when learn-
ing how to use a new API. Types provide an important con-
ceptual framework for the programmer, useful for program
design, maintenance and understanding [Bra04].

There are many different approaches (such as type in-
ferencing [Suz81, GJ90, Unt12, HPHf11, OPSb92] or grad-
ual typing [ACFT13]) to provide static type information to
dynamic languages. However, industrial programming envi-
ronments for object-oriented dynamically-typed languages
take little or no advantage of these ideas. One of the causes
for this is that frequently these approaches have somewhat
limited applicability on industrial programming, because
they work on a limited version of a general purpose program-
ming language [GarO1l, SS04] or even define their own lan-
guage specifically for that purpose [PS91, Hen94, OPSb92].
With Gradual Typing, other approaches propose to mod-
ify the language semantics and to add type annotations to
the language itself [Gra89, ST07, WB10]. In addition many
solutions are partial [Suz81, PS91] and do not cover com-
plex part of the language such as closures. Finally there are
approaches which are successful for program optimisation
and delivery, but its performance would be unacceptable
for interactive uses such as automatic refactorings and code
completion [Age96].

The programming environment chosen for this develop-
ment is Pharo!. Pharo is an Open Source programming lan-
guage and environment. It is inspired in Smalltalk and it is
used in many industrial applications.

Uhttp://pharo.org/
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The objective of this work is to create a pluggable type
system [Bra04] which can improve a programming environ-
ment by feeding the programming tools with type informa-
tion. Our main contributions are:

e a prototype implementation of an algorithm which com-
putes type information for an existing Pharo program,
supporting some of its most complex features, like block
closure and generic data types,

e a strategy for combining both concrete and abstract
types,

e a modular, configurable and extensible algorithm which
provides a framework for future analysis and, for exam-
ple, tune it alternatively for better performance or preci-
sion.

The rest of this paper is structured as follows. In Section 2
we present the problems arising from the lack of type infor-
mation in dynamic languages. Section 3 proposes an infer-
ence algorithm to get this information from an existing code
base without modifying it, also explaining how the different
type variables and constraints are built and how they interact.
Section 4 explains how we address some advanced features:
blocks and generic data types. In Section 5 we show a small
example of the type information that can be obtained using
our algorithm on a small but non-trivial program. Section
6 analyses the pros and cons of our solution, while Section
7 compares our proposal with other type inference alterna-
tives. Finally, we summarize our contributions in Section 8,
along with some possible lines of further work derived from
this initial ideas.

2. The Challenge of Lack of Type
Information

Type information can be useful to improve programming en-
vironments (IDEs). For example, an automatic method re-
name tool could use type information to select more pre-
cisely the message sends that should be updated when a
method is renamed. Also type information can be used to
show the programmer a list of messages that can be sent to a
variable or what kind of objects a method expects to receive
as parameter. Moreover, code navigation can be improved
for example if the IDE can provide a more acurate set of the
possible receivers of a message.

In several languages, the programmer is forced to provide
type information, for example associating each variable with
a type annotation. In these languages, static type information
is available and IDEs can take advantage of it. Dynamically-
typed languages such as Pharo, Javascript or Ruby allow
the programmer to avoid type annotations. This simplifies
prototyping and modelling, albeit sometimes limiting the
power of some programming tools.

A type inferer is a tool that automatically computes types
for some part of a program which lacks type annotations.
Statically typed languages such as Haskell or ML have a

large experience with type inference [Hud89]. However in
those languages the type system is integrated with the lan-
guage, i.e., we are unable to run a program with a type error.
It is a much more difficult task to apply type inference to a
program written with no notion of typing, which is the case
in object-oriented dynamically typed languages.

Dynamic object-oriented languages pose several difficult
challenges to type inference. Subtype polymorphism allows
a variable to hold objects of different types (and not related
types). For this reason, when a message is sent to an object,
it is not simple to see which method is going to be executed.
Also, for container objects such as collections it is not suffi-
cient to know its type (e.g., Set or OrderedCollection), instead
we need to have information about the type of its elements.
This capability of an object to be instantiated using differ-
ent types for its instance variables is known as generic data
types. [CW85]

The purpose of this work is to build a type-inferer system
that can be practically used to improve programming tools,
such as automatic refactorings, code navigation and smart
suggestions. To achieve this objective, a type-system should
comply to the following:

e It should work on existing real-world programs, i.e., we
may not restrict the use of the language or create an ad-
hoc language that fits the needs of our type-system. Also,
we should avoid requiring the programmer to add type
annotations to its program in order to use our tools.

The type-inferer should be responsive, i.e., it should be
able to run while a user is coding, for example each
time he compiles a method. An execution time of even
a few seconds is already unacceptable. To fulfill this
goal, we think that a type system should be able to work
incrementally, i.e., when a method is modified, rebuild
type information only for that method and re-use all the
information computed for the rest of the system.

On the other hand, since our goal is restricted to feed tools
with type information, we do not intend to detect type errors.

A usual purpose of a type system is to detect program-
ming errors [Mil78]. Though, dynamic language programs
frequently make use of programming idioms that are be very
hard or even impossible to type-check, as those described
in the work of Allende et al., [ACFT13], such as the use
of the same local variable to hold non related objects, or
any use of meta programming techniques. Having to avoid
those idioms to conform to a static type system, would cut
off a significant portion of the sense of a dynamic language.
Therefore, dynamically typed language programmers prefer
other tools to detect programming errors, such as unit testing
[GNDc04, Eck03, Mar03].

For these reasons, our solution does not intend to detect
errors in the program under analysis. Instead, we assume
it correct and just try to infer type information to help the

2014/8/7



programmer understand the program or modify it with more
confidence.

Dynamically-typed languages do not provide type infor-
mation for their core libraries. Since such libraries are just
programs expressed in the same language, it is possible to in-
fer their types with the same tools used to analyse individual
programs. Only primitives, which tend to be scarce in most
dynamic languages, require special inferencing handling be-
cause they often represent the connection to external world
such as C libraries or plugins. However, because of their
complexity and generality, the analysis of these libraries of-
ten will consume most of the time of a type-inferer. Since
application programmers seldom modify core libraries, we
choose to consider them also as primitives and feed the type-
inferer with their types [GarO1].

Type systems can be characterized from concrete to ab-
stract [Age96]. Abstract types specify an object’s interface,
while concrete types describe its implementation. Abstract
types can be modelled as a set of messages an object should
understands. Concrete types are usually modelled as sets
of concrete classes. Most type-inference systems on object-
oriented dynamic languages focus on concrete types, be-
cause they are useful for some purposes such as program
optimisation and delivery. Also they are simpler to under-
stand to programmers without a heavy background on type
systems. However, concrete types cannot express the type
of a method parameter whithout knowing all of its clients
(closed-world assumption). A somewhat novel feature of our
approach is to combine concrete and abstract type informa-
tion.

3. Basic Algorithm

Our solution implements a type inference algorithm based in
constraints generation which combines concrete and abstract
types. It associates each expression (in our implementation
each AST? node) with a type variable, it analyses the code
gathering constraints for each type variable and associates
each type variable with possible types so that all constraints
are meet.

The constraint solving algorithm is divided into indepen-
dent tasks which are related through a workflow. The al-
gorithm is extensible and configurable, new tasks can be
created and the workflow can be changed. In this way, our
solution provides both a useful tool for type inference re-
search and a configurable framework adaptable to different
purposes.

The algorithm is iterative, i.e., each task is executed mul-
tiple times and each time it may produce new information,
based on the information obtained by other tasks or by a pre-
vious execution of the same task. After a task is executed, the
workflow decides which task to execute next, depending on
if the previous task was successful in obtaining more type
information or not.

2 Abstract Syntax Tree

Also the solution is capable of handling generic data
types and inferring type information on independent parts of
the code, allowing the use of unbound parameters in the root
analysed method; in other words it can infer type informa-
tion in a program without a main method. This is achieved
by the combined use of concrete and abstract types. These
two sources of information provides a better understanding
of the analysed programs.

The input of our solution is one or more initial methods,
as it was said, these methods can have unbound parameters.
The algorithm will automatically select which other meth-
ods have to be analysed. The answer of our algorithm is a
set of restrictions gathered into type variables, which are as-
sociated to each expression in the program. The restrictions
specify the possible types of the values of the expressions,
using both concrete and abstract types. We name the set of
known classes that comply with those restrictions the result
of a type variable.

Our solution allows one to manually specify the types of
some methods, thus avoiding to infer their type information.
In fact a few of those type specifications are necessary for
the algorithm to work. This is the case for

e Virtual machine primitives

e Methods of generic classes, such as Collections (cf: Sec-
tion 4.2)

However, type specifications are also useful to set bound-
aries to type inference. For example, an application devel-
oper could take advantage of having type specifications for
the language core and other libraries he uses, as this would
shorten inference time. Also type specifications can improve
precision in cases where the algorithm cannot infer the most
precise type.

3.1 Type Variables and Constraints

As it was said previously, each expression has a type variable
associated with it. For example, for the expression: z := x
addTo: y, the following type variables are generated: ¢y, t,,
t, and t(x adato: y)- FFOr each variable in the code, we generate a
single type variable which is shared among all occurences of
the variable. Pharo has several types of variables including
class variables, instance variables, local variables, method
parameters and block parameters. Also a type variable is
created for the return type of each method.

The different type variables are related by constraints.
There are only two types of constraints: subtype constraints
and receive message constraints.

3.1.1 Subtype constraints.

A subtype constraint “¢, is subtype of t,”, written ¢, < ¢,
establishes that

1. If we know that C is a valid result for the subtype t,, then
C should be also a valid result for the supertype .
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2. If we know that the result of the supertype ¢, has to
understand message #m1, then the result of the subtype
ty also has to understand #m1

Therefore, these constraints can be used to propagate type
information. Each time we obtain some information about a
type variable, we can use it to deduce something about its
subtypes or supertypes.

It is worth mentioning that subtyping is a relationship be-
tween type variables and it does not have a direct relation-
ship to inheritance. Subtype constraints are generated in the
following cases:

e Assignment: a := b implies that ¢, < %,.

e Return: If we find the expression “a in the method #m
of class C, we can deduce t5 < tcsum1), Where tcsum
is the type variable associated to the return type of the
method.

¢ Parameter passing From the expression obj m: a and for
each class C that is a valid result for ., we can deduce
that t; < tcs#m.1), Where tcsym.q) is the type variable
associated to the first formal parameter of the method #m:
in the class C

The first two cases occur during the analysis of the AST (cf.
Section 3.3), while the last one is a bit more complex and
therefore it can only derived by the constraint solving tasks
(cf. Section 3.3).

3.1.2 Receive message constraint

A receive message constraint establishes that any valid result
of a type variable has to understand the specified message.
Moreover, it establishes relationships to other type variables
which will be related to the arguments and the result type of
the messages. For example, from the expression x addTo: y
we deduce:

ty should understand #addTo: with type t, — tx addto: y)

This means not only restricting the possible results for t,
but also associating the variable ¢, to the argument of the
message and the variable £ agqo:y) to its return type. This
associations are not useful at this point, but they will become
relevant once we assign t, to a concrete type (or many) and
hence #addTo: to a specific method (or many).

3.2 Type Information

All the type information collected by the algorithm is related
to a type variable. For each type variable (and hence for each
AST Node) we collect:

e The set with all the type variables which are direct sub-
types of this variable.

e The set with all the type variables which are direct super-
types of this variable.

e The set of messages that the types assigned to this type
variable must understand msgs(t,).

e The minimal set of concrete types that must fit in the type
variable: min(t,).

e The maximal set of concrete types that could fit in the
type variable: max(t,).

Subtypes and supertypes express relationships between
type variables and are created by the constraint generation
task (cf. Section 3.1). They will allow to propagate type in-
formation between type variables during constraint solving.
For example if we know that ¢, < ¢, and ¢, can be of type
Smallinteger, then ¢, must also be able to hold Smallinteger’s.
Following the relationship in the opposite way, if ¢, must
understand #addTo:, then its subtype t, must also understand
it.

The set of messages is also created by the constraint
generation task. Also, each message send is related to other
type variables representing the arguments and the return
value of this message send.

The minimal set of concrete types is a set of Pharo
classes. A class C is included in min(t,) each time the al-
gorithm can find evidence that an instance of C can be the
result of evaluating the AST Node related to ¢,. Examples of
evidence are:

e Literal values. For example from the expression x := 37
follows that Smallinteger € min(t,).

® Primitive return types. For example from x := OrderedCol-
lection basicNew follows that OrderedCollection € min(t,).

® Propagation due to subtype/supertype relationships. For
example, from this sequence of assignments: x = 37. y
= X, we know that Smallinteger € min(t,) (from the first
assignment) and ¢, < ¢, (from the second one). Then we
can deduce that Smallinteger € ¢,

The maximal set of concrete types of a type variable ¢, is
the set of all Pharo classes that could possibly be the result
of evaluating the AST node related to t,. If a class C is not
included in max(ty), it is because we have evidence that the
related AST node could never be evaluated to an instance
of C without producing an error. There are three ways of
compute max(ty):

® Primitive parameter types. Primitives usually can accept
only a limited number of classes as parameters, or even a
single one.

® Message sends. If msgs(ty) = {#add:, #remove: } then
max(t,) is the set of all classes that understand both #add:
and #remove:.

® Propagation due to subtype/supertype relationships. For
example, t, < t, and max(t,) = {A, B }, then max(t,) C
{A,B}.

In our algorithm the minimal set starts empty and is
enlarged as the algorithm finds new evidence. On the other
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hand, the maximal set starts containing all the classes in the
image? and it is reduced as the algorithm progresses. During
type inference always holds that min(t,) C max(t). Since
min(ty) can only grow and max(t,) can only shrink, the final
type computed will be between those two limits.

3.3 Tasks

Our algorithm is divided in 6 independent tasks:

¢ Generate type variables and constraints for a method.
e Propagate minimal set of concrete types.

e Link a message-send with a method.

® Propagate maximal types.

e Compute max concrete types from message sends.

e Infer a minimal type from a singleton maximal type.

The following sections explain each of these tasks.

Constraint generation. This task has the responsibility of
creating the type variables for a method. For each method
that has to be analysed, it can proceed in two ways. If there
is a type specification for that method, it generates only type
variables for its formal parameters and return type, with
fixed types. If a type is not present (which is the general
case), the task walks through the AST of the method gener-
ating a type variable for each expression in the method. In
this case, while traversing the AST, it also collects the sub-
type relationships between type variables, and each message
sent to an expression is translated intro a constraint applied
to the associated type variable, as described in Section 3.1.
This is the starting point of the algorithm and the only
mandatory task. Since the input to the algorithm is a set
of methods, the first execution of this will compute type
variables and constraints for each of these input methods.
As other tasks are executed, the algorithm will discover other
methods that have to be analysed. These methods will not be
analysed immediately but enqueued. The workflow has the
resposibility of deciding when to re-execute this task.

Propagate Minimal Set of Concrete Types. The main ob-
jective of this task is the propagation of the minimal types
detected in previous tasks. For each pair of type variables ¢,
and ¢, such that ¢, < t,, we have to update min(t,) so that:

min(ty) := min(t,) U min(ty)

i.e., the minimal type set of the supertype ¢, is enlarged to
include the minimal type set of the subtype .

For efficiency reasons, the algorithm keeps track of which
concrete types have already been propagated. By doing so,
in each execution of the task we also are able to tell if new
information has been discovered or not, which is necessary
for the workflow to decide which task to run next.

3 This is only from a theoretical poin of view. For efficiency reasons, in the
actual implementation the set of all classes is never computed.

Link a message sent with a method. The main objective
of this task is to link the type variables associated to a
message-send with the type information associated to a spe-
cific method. To be able to do this, we have to infer the pos-
sible method that could be executed as response to the mes-
sage send. Those methods are looked up in the classes from
the minimal type set of the receiver. Thus, for each message-
send x m: y and for each C € min(t,), we look up the type
variables for the formal parameters and return type of the
method C>>#m and create the following constraints:

ty < tics#m.) tcs#mt) < Lxm:y)

The use of type variables allows us to create these subtype
relationships without having actual type information for the
method C>>#m. If the type information is not available, we
only create the type variables and enqueue the method for
being processed by the constraint generation task (cf. Section
3.3).

As in the previous task, for each message-send, the algo-
rithm keeps track of the concrete types of the receiver for
which we already generated constraints, avoiding to process
the same method twice for the same message-send and al-
lowing the task to inform the workflow if it has make some
progress.

Propagate Minimal Set of Concrete Types. This task
propagates the information of the maximal types set is prop-
agated through in a similar way as explained in Section 3.3.
Still, there are two big differences in the operation of both
tasks.

First, the nature of the maximal types set mandates to
propagate the information in the opposite direction, i.e., from
supertypes to subtypes. If ¢, < ¢, this means that the final
result of ¢, has to be included in the final result of ¢,. Since
max(t,) is an upper limit of the final result of ¢, it also works
as un upper limit ¢,.

Second, as we said before, the initial maximal types set
contains all the classes in the image and it shrinks as we ob-
tain more information. Therefore, the propagation process
leaves only the concrete types present in both the type vari-
able and its supertype:

max(ty) = max(ts) N max(t,)

Compute max concrete types from message sends. In this
task the information of the maximal concrete types are fil-
tered using the messages sent to the type variable. Only the
concrete types which implement all the messages are kept in
the maximal set.

Infer a minimal type from a singleton maximal type. This
is the only task in the current implementation which com-
bines information from the minimal and maximal sets. When
we find out that the maximal types set of a type variable has
only one concrete type (max(ty) = {C }), then the minimal
types set should contain exactly the same type.

min(ty) := max(ty)
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3.4 Coordination of tasks

The tasks of the algorithm are coordinated by a workflow.
The workflow is organized in run levels, each run level has
one or more tasks to execute. The workflow executes the
run levels in a sequential way, deciding which run level
to execute next depending on if the previous run level has
produced new information or not.

The workflow is fully configurable, allowing to create
new tasks, remove some of the current tasks and change how
the tasks are organized run levels. Having a configurable
workflow allows to use our algorithm as a testing bench
for different configurations, comparing their performance,
accuracy and fitness for different purposes. Also, different
configurations could be useful for different purposes. For
example, a smart suggestions tool requires a very fast type
inferer, even at the cost of loosing precision, while a type
inferer used for compiler optimization can be allowed to run
for hours but has to be extremely precise because a wrong
inference would make the program fail at runtime.

So far we have been working with single workflow con-
figuration, which proved to be successful in typing some
small but not trivial programs (cf: Section 5). This config-
uration includes all the 6 tasks described in Section 3.3, or-
ganized as described in Figure 1. In the figure each node
represents a run level and the numbers in the nodes repre-
sent tasks. Each node has two outcoming links. The dotted
link shows the path to be followed by the workflow in the
case that the run level is successful in producing new type
information. The other one is the path to follow if the run
level does not find new information.

. Generate constraints type variables for a new method.
. Propagate minimal types.

. Link a message send with a method.

. Propagate maximal types.

. Compute max concrete types from message sends.

. Infer a minimal type from a singleton maximal type.

o g~ WD =

Figure 1. A possible workflow configuration

4. Advanced Features

One of the distinctive feature of our solution is the capability
of handling blocks (also known as closures) and generic
data types. Generic data types are specially useful for typing
collection objects.

4.1 Blocks

A block in our type system is represented by a special type
variable, which acts as a composite [GHJV95] type variable.

Its component type variables are: the type variable associ-
ated to the return value of the block, and each of the type
variables related to the parameters of the block, if the block
has any.

Block type variables can be introduced either by the pres-
ence of a block literal in the AST or by a type specification.
Also, when a block type variable gets involved in a subtype
constraint, the other type variable is also converted to a block
type variable if necessary.

When a subtype relationship is established between two
block type variables, the subtyping relationship is propa-
gated to the component variables. For example, in the fol-
lowing use of a block:

x:=[:a|amsg]value:y.

In this example, some of the generated type variables are:
t([ :alamsgl)s t([ alamsglt)» ta, tx, ty. And the fOHOWng con-
straints are generated between them:

o t, <t,

® tialamsglt) < tx
® #msg € msgs(t,)

4.2 Generic Data Types

Our type system can handle generic data types, which are
also represented by special type variables. Generic type vari-
ables have a subsidiary type variable. For example, if the
type variable ¢, is infered to be an OrderedCollection (which
is a generic data type), a subsidiary variable ¢ ) is created.
The subsidiary type variable will be used to compute the type
of the elements of the collection.

Generic data types are introduced by type specifications,
the current algorithm does no attempt to infer that a class
requires to be handled as a generic data type. Still, once
introduced, generic data types can be propagated through
subtype constraints. As with blocks, each time a generic type
variable gets involved in a subtype constraint, the related
variable is converted to a generic one, if necessary. Block
type variables cannot be converted into generic data type
variables or viceversa. If such situation arises, we consider it
an error in the program and inform it to the user. Also, a type
variable’s minimal type set cannot contain both collections
and other non-generic concrete types.

In our system, generic data types are invariant, i.e., if 4
< 1y, then both subsidiary variables have to be equal: ¢ .q) =
ty.o)- This resembles the type system of several statically-
typed object-oriented languages with generic data types,
such as Java [BOSWO98]. Generic data types are always at
class level, and not at method level.

The following example shows the constraints generated
in the presence of generic data types:

a := OrderedCollection new.
a add:x.
y :=aany.
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Some of the generated type variables are t,, t(a.q), tx and t,.
And the interesting constraints generated are:

® OrderedCollection € min(t,).

® t, < ta.q) because the type of the parameter of #add: is a
subtype of the elements in the collection.

® ta) < t, because the return type of #any:* is a subtype
of the type of y.

4.3 Mixing Collections and Blocks

Since in Pharo, iterators are fully integrated in the language,
collections are often combined with blocks. This combina-
tion provides some of the most challenging situations for a
type inferer, but also very important to handle. Since the use
of these combination is so frequent, a type inferer that is not
able to handle it will be of little use for industrial programs.
The following example shows the constraints that are gener-
ated in these situations:

| colr|

col := OrderedCollection new.
col add: anObject.
r:=colsum:[:e|emsg].

In order to infer types for this piece of code, the algo-
rithm will make use of the type specification associated to
the methods #add: and #sum: of class OrderedCollection. To
specify a generic data type we use a symbol instead of a con-
crete type, for example «, which will be associated to the
subsidiary variable of the container type. So, the methods
are specified as follows:

® #add: receives .
e #sum: receives a block with type a— Smallinteger and
returns Smallinteger.

With this information, the algorithm can infer the informa-
tion in Table 1.

Type Variable Maximal Set Minimal Set Messages

teol OrderedCollection |#add:
#sum:

tanObject #msg

t (e mesg) Smallinteger

t(COLQ) #msg

t, Smallinteger

Table 1. Example combining collections and blocks

5. Example

In this section we will show a small example of the execution
of the inference algorithm. This example, even being an

4 Which returns any element of the collection

5 The return type is not of interest

Task >> initialize
subtasks := OrderedCollection new.

Task >> addSubtask: anObject
subtasks add: anObject

Task >> complexity: anObject
complexity := anObject

Task >> ownCost
A complexity cost: self

Task >> totalCost
A self ownCost +
(subtasks sum: [ :subtask | subtask totalCost ])

Figure 2. Code for the Task class.

Type Variable Maximal Set Minimal Set Messages
tsubtasks OrderedCollection |#add:
tsubtasks.ax Task Task! #totalCost
¥ (Task> #totalCost. 1) [Smalll nteger
tcomplexity MediumComplexity, #oost:
SmallComplexity,
HighCompIexity2
t(sen ownCost) Smallinteger #+

Notes:
1. Task is the only implementor of #totalCost
2. The implementors of #cost:.

3. Itis the result of adding two Smallinteger’s.

Table 2. Results of the Task class

small one, it is a clear example of real industrial code. It
is an implementation of a Composite Pattern [GHJV95].

The figure 2 presents the code of the Task class, from a
task management system. An object of this class is respon-
sible for the calculation of its own total cost. The cost of a
task depends on two things: his own cost and the sum of the
total costs of his subtasks. The own cost of a task is calcu-
lated by another object that understands the message #cost:
with a task as a parameter, implementing an abstract Strategy
pattern [GHJV95]. There are three classes which implement
#cost:, MediumComplexity, SmallComplexity and HighComplex-
ity. The task has two instance variables, #subtasks and #com-
plexity. Table 2 shows the most relevant information resulting
from analysing the Task class.

It is remarkable that the algorithm detects the type of the
elements inside subtasks. Once established that ¢gpasks 1S an
OrderedCollection, we are able to take advantage of the type
specification provided to OrderedCollection>>#sum:. There-
fore, the block has to be of type « — SmallInteger, where
« is the type of the elements of the collection and is associ-
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ated to the argument of the block (Zgptask). Given that tgyptask
has to understand #totalCost and the only class implementing
this method is Task, we deduce that min(ts piasks.o.) = { Task}.

6. Discussion

One of the biggest challenges about infering types for object-
oriented dynamic languages is scaling to handle big pro-
grams. Our solution has been only tested in small programs
and an exhaustive analysis of its performance using more
benchmarks and different kinds of programs is still a pend-
ing task. However, we are working on four different strate-
gies to obtain acceptable execution times.

First, the possibility of specifying fixed types for core
classes and other reusable libraries, reduces the number of
methods to analyse and hence the number of type variables
and constraints to solve.

Second, our implementation allows for different config-
urations, creating new tasks or even changing the existent
ones. These capabilities can be exploded to regulate the rela-
tionship between precision and speed, increment the amount
of information generated and even design custom tasks for a
specific program.

Third, we are working on an incremental version of the
algorithm, i.e., which is able to handle method changes with-
out running the whole type inference process from scratch.
Since our intention of this work is to provide information
for interactive tools, our aim is to listen to announcements
regarding the method updates, discard only the type infor-
mation related to the old version of the method, and keep the
rest of the type information as input to the next execution of
the algorithm.

Finally, one frequent problem of constraint solving type
inferer is the amount of type variables that they generate,
both because of their size in memory and execution time
(since algorithms tend to grow exponentially on the amount
of type variables). The incremental version of the algorithm
will also cope with this problem, since after analysing a
method we will be able to keep only the type variables in the
method interface (i.e., formal parameters and return type)
discarding all other type variables which can be considered
internal to the method.

Other approaches have proposed to use type annotations
in order to have static type information. Type specifications
show several advantages over type annotations. Since type
specifications are not part of the code, the type system and
the tools do not affect the structure of the code or the way a
programmer works with it. In this way, our solution is ori-
ented by the idea of pluggable types [Bra04], which pro-
poses that the type information and the type system are not
an integral part of the language, but only optional tools.

Moreover, most of the type specifications are not neces-
sary for the algorithm to work. Instead, they are only a useful
tool to speed up the inference process, by avoiding to analyse
code that we are not intending to change. Is the programmer

intends to change a portion of the core library, he could sim-
ply remove type specifications for that portion. Also, some
type specifications can be the result of a previous execution
of the type inferer, i.e., we run the inference process on a
reusable library and save the inferred types to be used as in-
put when inferring types for a client of this library.

Our solution lacks of a formal model. The aim of this
work is to provide a tool for industrial use, that can deal
with real programs written in industrial languages and that is
integrated in industrial programming environments. There-
fore, our focus is to provide useful type information fast
enough to be used in interactive tools. This objective can
not be fulfilled if, in order to get a formal proof of sound-
ness, we would cut off some of the most interesting parts of
the language. We share this approach with renaming tool of
Unterholzner [Unt12].

Our solution is able to handle generic data types but
our approach can be limiting in some situations, we are
analysing the idea of adding more support to Polymorphic
Types: adding support to polymorphic messages, and detec-
tion of generic types developed by the programmer.

7. Related Work

To our knowledge, there are few type inference approaches
combining abstract and concrete type information. In this
regard, Graver [Gra89] proposed a type checking solution,
based in an open world assumption. The main difference
with our work, is that Graver’s solution requires type spec-
ifications for class-, instance- and global variables, while in
our solution this information is inferred.

Martin Unterholzner’s work [Unt12] shares with ours the
objective of using type inference to improve programming
tools. In his case type information is used to aid method
rename refactorings. To achieve his goal, he uses symbolic
evaluation of the AST generated from the source code. His
solution starts in a closed world context and then opens it
to gather more information. His solution is focused in pro-
viding information for the renaming tool he is presenting,
generating only the type information which is necessary for
this specific purpose. Therefore it is not clear the applicabil-
ity for use with other objectives.

Spoon and Shivers [SS04] have proposed an algorithm
called DDP which prunes subgoals by giving solutions that
are trivially true, reducing computation time at the cost of
reducing precision. Their solution put emphasis in the per-
formance and the scalability of the solution, but not in the
precision. Our solution works also with different goals and
tasks, but it does not use pruning. On the other hand our so-
Iution provides a way of inferring the type of the variable
from the messages sent to it; in other words, we combine the
information produced by the concrete types and the informa-
tion from the abstract types.
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Haupt et al., [HPHf11] have proposed to gather type in-
formation by observing application code while it is running.
They claim to provide more fine-grained results than type
inference approaches. In this work the harvested types are
objects’ classes. The crucial difference with our work is that
our solution is based in a static analysis, while the solution
of Haupt et al., gather all the information from running the
tests. This approach needs to have running tests, and all the
inference is based only in these tested cases.

Wang and Smith [WSO01] propose an extension to CPA
[Age95] which provides a way of handling generic data
types. Their solution is focused in the checking of downcasts
and it is highly coupled to Java Language.

Pluquet et al., proposed a solution named Fast Type Re-
construction [PMWO09], which is based in the static analysis
of methods, but their solution only takes into account a small
amount of expressions: assignation to literals, arithmetic ex-
pressions, boolean expressions and instance creations. This
approach allows speeding up the solution but loses precision.
Our solution propagates the return type of any message sent;
providing more information about types.

Oxhoj et al., [OPSb92] present a solution that can han-
dle generic data types in the collection classes by using type
variables for all the expressions and solving their relation-
ships. However, their solution produces a high duplication
of type variables, classes and methods as any generic type
is duplicated for each use. For example, if there is a List of
Booleans and a List of Integers; the algorithms creates two
subclasses of List, one for each class of the elements.

8. Conclusion

In this work we proposed a practical solution for the lack
of type information in dynamic languages, which focuses
in providing useful information to be used in programming
tools such as automatic refactoring, program understanding,
program navigation and smart suggestions.

The solution provides an implementation for a real lan-
guage in industrial level environment, which allows to build
tools on top of it. The solution can be used as an external
tool, without affecting the normal work of the programmer.
Also, these ideas are applicable to other industrial level dy-
namic languages.

Regarding performance, we have promising results infer-
ing types for small programs and a testing bench for devel-
oping a responsive solution able to work on bigger programs.
Our solution lacks of a formal proof of soundness, but we do
not consider it a big drawback, given our objective.

One of the next steps in our research work is to add a
global analysis of the type variables. For example, if the
algorithm finds a local or instance variable with only one
assignment, we could establish a new constraint, stronger
than the subtype constraint that we are using now.

Also we intend to incorporate new tasks based on heuris-
tics. This tasks provide potential answer with a lesser per-

centage of precision. Moreover, heuristic tasks could make
use of fuzzy logic [ABCDG65]. Heuristic tasks will be used in
cases when the more precise tasks are not succesfull, adding
them in a new run level. Still, other sequences of execution
can be explored, changing the way the tasks are combined
into different run levels.

Our solution can be used as a framework for developing
different type systems. These type systems can work like
plug-ins in a IDE. In this way the programmer can choose
the set of tools to use in a particular problem. Also, our
approach can be combined with other unrelated pluggable
type systems, providing complementary information about
the same program. As a result, the way different type sys-
tems and implementation cooperate and behave is an inter-
esting approach to study.
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