
Handling Exceptional Conditions 1

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Spe
cim

en

Handling Exceptional Conditions

All real programs have to deal with exceptional conditions. Following a summary of
different approaches to exception handling in VisualWorks, this module concentrates on
describing classes Exception and Signal, giving examples of their correct usage.

An exceptional condition is something that is expected to occur infrequently, and
does not fit into the usual pattern. More often than not the condition is detected in a piece
of code that cannot properly deal with the condition, because the context in which it has
been detected is inappropriate. Hence, the condition must be signalled to a wider context,
i.e., the calling code.

1. When to use Exception Handling
You should not try to use exception handling code to:

• Deal with (local) hardware faults. Possible exception: network failures.

• Work round errors in the program. Software can fail in an infinite number of different
ways, and you can’t anticipate them all.

However exception handling code should be used to deal with infrequent, but
anticipated conditions, such as:

1. User Errors. Rather than testing for all the numerous ways a user can make a
mistake (for example when prompted for a number), you can use exception
handling as a catch–all.

2. Violation of usual preconditions. With every piece of code there should be two
sets of preconditions:

•Those which, if violated, will cause the code to fail in arbitrary and undefined
ways. Guaranteeing that these preconditions are met is the responsibility of the
caller, and is not normally checked by the called code. For example, when
passing a cyclic structure to a tree–walking algorithm, it is impractical and
inefficient to test for these sorts of errors.

•Those which are tested for and dealt with by code, and cause an exception
condition to be passed back to the caller.xample: looking up a non–existent key
in a data structure.

Handling Exceptional Conditions 2

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Spe
cim

en

2. Different Approaches in VisualWorks

2.1. Exceptional Value
If there is a distinguished value which cannot be an otherwise sensible answer (e.g. nil),
return that. Examples: returning 0 as the array index of a value which is not present in the
array (e.g., from findFirst:); superclass of a class returns nil for Object.

2.2. Test for exception as a separate message
Provide a test message to indicate that a precondition would be violated. Example:
isEmpty in collections; asking for the first element in a list does not make sense if the
collection is empty.

This approach can be used if the test is inexpensive to compute, and does not
significantly overlap with the algorithm itself, and no suitable exceptional value exists.
Example in which this approach is bad: testing to ensure that a tree contains a particular
value; the test for the missing value is the same as the search itself.

2.3. Returning a pair (triple, etc.) of values
One value in the pair indicates if an exceptional condition has arisen (and the other is
undefined), otherwise the other value(s) is(are) the answers. This approach is rather
unusual in VisualWorks, and is more likely to be seen in Pascal or C, thus best avoided.

2.4. Exception block
An exception block is activated should an exception arise, and can use the calling context.
Example:

coll at: key ifAbsent: [self notFoundError]

If the algorithm must terminate when an exception is detected, ensure that it cannot
continue should the exception block return, thus:

^exceptionBlock value

Exception blocks are sometimes stored in instance or class variables to avoid being
passed around all over the place.

2.5. Multiple exception blocks, exception blocks with parameters
If there is more than one way an exception can arise, then it may be desirable to separate
these. This may be achieved by using multiple exception blocks, for example:

reactant
changeTemp: delta
ifFreezes: [reactant expand]
ifBoils: [vessel explode]

Alternatively, it may be better to use a parameterize the exception block, as below:

Handling Exceptional Conditions 3

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Spe
cim

en

reactant
changeTemp: delta
ifStateChanges:

[:state |
state == #gas ifTrue: [vessel explode]]

Make sure in the comment that it is clear the block should accept parameter(s).

2.6. Sending a message

To self

Useful if the error can be meaningfully reinterpreted by a subclass.

self error: 'error message'
self errorOrSomething

To an error handler

For example, the compiler must behave differently for errors in source when filing in, and
when run from a browser or workspace. The user interface to the error handler is
encapsulated in separate classes. Instances of subclasses of CompilerErrorHandler (an
abstract superclass), respond differently to the following message:

requestor
error: #syntax
with: string, '->'
at: location

3. Signals and Exceptions
The exception handling mechanism provided by classes Signal and Exception provide the
most general solution, but it is also the most complex. Don’t use a sledgehammer to crack
a walnut!

A Signal represents a kind of error. Signals are arranged in a hierarchy so that more
general signals can be used to cover different kinds of error. For example, the division–
by–zero signal is below the general arithmetic error signal in the hierarchy. The signal
hierarchy, like the class hierarchy, is basically static. An Exception represents the dynamic
invocation of a signal, i.e. the specific occurrence of an error. It therefore knows which
signal was raised, and in what context.

Suppose we are building a calculator application. If the user attempts to divide 42
by 0, a Notifier will appear, saying

Can’t create a Fraction with a zero denominator.

This isn’t terribly meaningful to the average user. Besides, we don’t want to present
the user with a notifier or debugger: we want the application to recover and continue.

Handling Exceptional Conditions 4

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Spe
cim

en

This is one case in which we can use a signal. We set the signal to watch over the part
of our application that performs arithmetic. When things are going smoothly, the signal
just observes. When a specific error occurs, the signal is notified and an exception is created
to represent the error. The exception travels back down the message stack looking for a
matching exception handler. When a handler is found, it receives control. The handler can
execute recovery code, and then direct flow back to the point at which the error was
raised, or abandon the error code and proceed down a different path (see Fig.1).

3.1. Handling Existing Signals
To use a signal, we must tell it what to do and how to handle an error. Hence, we send the
handle:do: message to the appropriate instance of Signal. For example, to catch division–
by–zero errors, send the message to

ArithmeticValue divisionByZeroSignal.

Signals are arranged in a hierarchy, with those higher up in the hierarchy covering
all the error situations of those lower in the hierarchy. Hence, to catch all arithmetic errors,
including division by zero, we could use the signal:

 ArithmeticValue errorSignal

Figure 1: Exceptions and Signals

Context stack

Signal is bound
to handler

1

Exception is
raised

3

Handler is
executed

4

stack searched

2 Code to be
handled is
called,
exceptional
case occurs

for handler

Handling Exceptional Conditions 5

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Spe
cim

en

which is above divisionByZeroSignal in the signal hierarchy. See the VisualWorks
manual for a list of predefined signals, or browse any ‘Signal constants’ class methods
(e.g., in Object or Number).

The handle:do: message takes two blocks as arguments. The do: block is the code
during which the exception handling takes place, the handle: block is the exception
handler, and is passed the exception as an argument. For example:

result :=
 ArithmeticValue divisionByZeroSignal

handle: [:theException |
Dialog warn: 'Division by zero!']

do: [self doOperation]

3.2. Passing Control on from the Handler

The exception handler can deal with the exception in one of the following ways:

1. Each signal is either proceedable (i.e., the handler can instruct computation to
continue), or non–proceedable. If the signal is proceedable, and is raised in a
proceedable way (see later), then the handler can cause computation to proceed
from the point of error by sending the exception one of the messages described in
Table 1.

2. It can refuse to handle the exception, sending reject to the exception. The exception
will continue its search down the message stack for a matching handler.

3. It can exit the handler block and the enclosing handle:do: by sending return to the
exception (which returns nil from handle:do:). To return some other object, use
returnWith: anObject.

4. The do: block can be restarted, by sending restart to the exception. To substitute the
do: block with another block use restartDo: aBlock. Here’s an example insists that
the user supply a valid Date (by trapping all conversion errors in Date>readFrom:):

Message Description

proceed Return control to the point at which
the error occurred.

proceedDoing: aBlock Substitute aBlock, then proceed

proceedWith: aParameter Return control to the point at which
the error occurred, using aParameter
as the returned value

Table 1: Proceed Messages

Handling Exceptional Conditions 6

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Spe
cim

en

| date input |
input := Dialog request: 'Enter a date'.
Object errorSignal

handle:
[:ex |

input := Dialog request: 'Try again'.
ex restart]

do: [date := Date readFrom: input readStream].
Transcript show: date printString

If a handler doesn’t explicitly specify one of these alternatives, it has the same effect
as returnWith:, returning the value of the handler block.

Ex 1. Browse class PassingControl, and experiment with the class examples.

3.3. Using An Existing Signal
Sometimes you may need to produce a method that can create an exception directly. For
example, if you create a new kind of indexed collection then you should create an
exception if an access is made with an invalid index. In this case, there is an appropriate
existing Signal we can use:

Object indexNotFoundSignal

To create an exception, send a Signal the message raise. If you wish the exception to
be proceedable, use raiseRequest (or one of the request variants below). Alternatives are
described in Table 2.

If you want to find all the existing signals, evaluate:

Browser browseAllClassMethodsInProtocol: 'Signal constants'

Message Description

raiseErrorString: aString
raiseRequestErrorString: aString

Provide a error string for the resulting
Exception. If the first character of the
string argument is a space then it is
appended to the Signal’s notifierString.

raiseWith: parameter
raiseRequestWith: parameter

Provide a parameter for the resulting
Exception. The parameter can be
accessed by sending parameter to the
Exception.

raiseWith: parameter errorString: aString
raiseRequestWith: parameter errorString: aString

Combination of above. If the last
character of the string argument is a
space then it is prepended to the
Exception’s parameter.

Table 2: Raising Messages

Handling Exceptional Conditions 7

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Spe
cim

en

Ex 2. Experiment with the examples in class RaisingExceptions.

3.4. Adding a new Signal
To create a new signal of your own, find an existing signal and make your signal a
descendent of that. (Object errorSignal is the general “catch–all” error signal). This is
typically done in a class initialization method, and the signal is stored in a class variable,
for example:

MySignal := Object errorSignal newSignal.

If the original signal was proceedable, the new signal will also be. If you don’t want
the same proceedability, use newSignalMayProceed: aBoolean. You may also provide the
signal with a notifier string, using the message notifierString:.

Ex 3. Browse class NewSignal, to see how a new signal may be created. What is the
purpose of the nameClass:message: expression in the class initialization
method?

Classes SignalCollection and HandlerList are provided to avoid lots of nested blocks.
SignalCollection instances also understand handle:do:. HandlerList instances understand
on: aSignal handle: aBlock (for each signal); the created instance should be sent the message
handleDo: doBlock.

3.5. Example: Simulating a “Trigger”
VisualWorks doesn’t have “triggers” as basic features, but you can implement them easier
than in most other languages.

Object subclass: #TriggerObject
instanceVariableNames: 'lowerLimit upperLimit value '
classVariableNames:

'TriggerUpperSignal TriggerLowerSignal'

Class methods

instance creation

newFrom: lower to: upper
^ self new initializeFrom: lower to: upper

class initialization

initialize
"Create new signals"
"TriggerObject initialize"

TriggerUpperSignal := Object errorSignal newSignal.
TriggerUpperSignal nameClass: self message: #upperSignal.
TriggerUpperSignal notifierString: 'Upper Limit Failed '.
TriggerLowerSignal := Object errorSignal newSignal.
TriggerLowerSignal nameClass: self message: #lowerSignal.
TriggerLowerSignal notifierString: 'Lower Limit Failed '

Handling Exceptional Conditions 8

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Spe
cim

en

Signal constants

lowerSignal
^ TriggerLowerSignal

upperSignal
^ TriggerUpperSignal

Instance methods

initialize - release

initializeFrom: lower to: upper
lowerLimit := lower.
upperLimit := upper

public - value

value: aValue
aValue > upperLimit ifTrue:[TriggerUpperSignal raiseRequestWith: aValue].
aValue < lowerLimit ifTrue:[TriggerLowerSignal raiseRequestWith: aValue].
value := aValue

testing

test
"TriggerObject test"

| trigger |
trigger := TriggerObject newFrom: 0 to: 100.
^TriggerObject lowerSignal

handle: [:ex | Transcript cr; show: ex errorString.
ex proceed]

do: [trigger value: -10]

Ex 4. Which of the above approaches would you use to handle the following
exceptional situations?

a. A menu pops up; the user selects none of the items.

b. A database is accessed for a record, by giving it a key; the key does not exist in
the database.

c. The elements of an array are to be added together, returning the sum. What if
the array is empty? What if one of the elements is not a number?

Ex 5. Add two extra testing methods to TriggerObject to handle both lower and upper
limit range errors, using

a. a SignalCollection

b. a HandlerList.

Ex 6. Add a method to BlockClosure, logErrors, that executes a block (the receiver) and
uses an exception handler to catch any exceptions, printing a message in the

Handling Exceptional Conditions 9

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Spe
cim

en

Transcript when an exception occurs, and aborting the block. Test the code with
the following expression:

['one' + 'two']

Ensure that the result of the block is returned if no error is encountered, nil
otherwise. What might be the purpose of such a handler?

Ex 7. Define a new signal, Object loopBreakSignal, which is to be raised to exit from
loops, in conjunction with a method, break, in Object, and a method, loop, in
BlockClosure:

"returns an array with more than 14 elements"
[Array allInstances do:[:i | i size > 14 ifTrue:[i break]]] loop.

What should the signal’s parent be? Write the loop and break methods. (We will
return to this code in the optimization module.)

	Handling Exceptional Conditions
	1. When to use Exception Handling
	1. User Errors. Rather than testing for all the nu...
	2. Violation of usual preconditions. With every pi...

	2. Different Approaches in VisualWorks
	2.1. Exceptional Value
	2.2. Test for exception as a separate message
	2.3. Returning a pair (triple, etc.) of values
	2.4. Exception block
	2.5. Multiple exception blocks, exception blocks w...
	2.6. Sending a message
	To self
	To an error handler

	3. Signals and Exceptions
	Figure 1: Exceptions and Signals
	3.1. Handling Existing Signals
	3.2. Passing Control on from the Handler
	1. Each signal is either proceedable (i.e., the ha...
	Table 1: Proceed Messages
	2. It can refuse to handle the exception, sending ...
	3. It can exit the handler block and the enclosing...
	4. The do: block can be restarted, by sending rest...
	Ex 1. Browse class PassingControl, and experiment ...

	3.3. Using An Existing Signal
	Table 2: Raising Messages
	Ex 2. Experiment with the examples in class Raisin...

	3.4. Adding a new Signal
	Ex 3. Browse class NewSignal, to see how a new sig...

	3.5. Example: Simulating a “Trigger”
	instance creation
	class initialization
	Signal constants
	initialize - release
	public - value
	testing
	Ex 4. Which of the above approaches would you use ...
	a. A menu pops up; the user selects none of the it...
	b. A database is accessed for a record, by giving ...
	c. The elements of an array are to be added togeth...
	Ex 5. Add two extra testing methods to TriggerObje...
	a. a SignalCollection
	b. a HandlerList.
	Ex 6. Add a method to BlockClosure, logErrors, tha...
	Ex 7. Define a new signal, Object loopBreakSignal,...

