Appendix1: VisualWorks 2.5 versus Smalltalk-80

VisualWorks 2.5
Smalltalk-80

Assignment
:=
(

Global Variables
Start with Caps
Does not care

DeepCopy
Removed
Present

Fractions
asRational
asFraction

FileName protocol
fileNamed:
named:

Differences found throughout the lecture note’s examples

· Classes removed from VisualWorks 2.5

· Button
· DebuggerController
· DebuggerTextView
· DialogCompositController
· DialogController
· DialogView
· FixedThumbScrollbar
· FractionalWidgetView
· HandlerController
· ListController
· ListView
· SelectionSetInListController
· SelectionInListView
· TextItemView
· TextItemEditor
· TextController
· TextView
· PopUpMenu
· WidgetSpecification
Appendix2: VisualWorks rules and Smalltalk Syntax

· Capitalization XE "Capitalization" rules

· Upper Case

· Class names

· Class variables and global variables

· Lower Case

· Method names

· Temp variables, instance variables, class instance variables, method arguments

· Use embedded capital letters, not underscores

· Reserved words

· nil XE "nil"
· true XE "true"
· false XE "false"
· self XE "self"
· super XE "super"
· thisContext XE "thisContext"
· Operators XE "Operators"
· :=

· called ‘gets’ operator, used for assignment

· ^

· called ‘returns’ operator, used to return a value

· Example

name: aSymbol

name := aSymbol.

^name.

· Literals XE "Literals"

· use VisualWorks syntax chapter for reference here

· Numbers

· Characters

· Strings

· Symbols

· Arrays of literals

· Byte Arrays (notice the use of brackets)

· Comments XE "Comments"
· “Comment”

· periods allowed within double quotes

Appendix 3: A List of Methods for the System Classes

Magnitude:

Creation:

Operations:

< aMagnitude

less than operator returns boolean

<= aMagnitude

less than or equal operator returns boolean

> aMagnitude

greater than operator returns boolean

>= aMagnitude

greater than or equal operator returns boolean

between: min and: max

returns True if object’s magnitude is between min and max

min: aMagnitude

returns the lesser of the object and aMagnitude

max: aMagnitude

returns the greater of the object and aMagnitude

Magnitude->Date:

Creation:

today

instance representing the current date

fromDays: dayCount

instance representing the date dayCount days from 01/01/1901

newDay: day month: monthName year: yearInteger

instance representing day number of days into monthName in yearInteger

newDay: dayCount year: yearInteger

instance representing dayCount days into yearInteger

Operations:

dayOfWeek: dayName

returns index of dayName in the week, #Sunday = 0

nameOfDay: dayIndex

returns Symbol representing the day whose index is dayIndex

indexOfMonth: monthName

returns index of monthName in the year, #January = 0

nameOfMonth: monthIndex

returns Symbol representing the month whose index is monthIndex

daysInMonth: monthName forYear: yearInteger

returns Integer representing the number of days in monthName for year yearInteger

daysInYear: yearInteger

returns Integer representing the thumber of days in yearInteger

leapYear: yearInteger

returns 1 if yearInteger is a leap year, 0 otherwise

dateAndTimeNow

returns Array whose first element is current date, and whose second element is the current time

addDays: dayCount

returns Date that is dayCount days after object

subtractDays: dayCount

returns Date that is dayCount days before object

subtractDate: aDate

asSeconds

returns number of seconds between a time on 01/01/1901 and the same time in the receiver’s day

Magnitude->Time:

Creation:

now

instance representing the current time

fromSeconds: secondCount

instance representing the time of secondCount after midnight

Operations:

millisecondClockValue

returns number of milliseconds since the millisecond clock was reset or rolled over

millisecondsToRun: timedBlock

returns number of milliseconds timedBlock takes to execute

timeWords

returns the number of seconds since 01/01/1901 (GMT) in 4 element byte array

totalSeconds

returns total number of seconds since 01/01/1901, correcting the time zone and daylight savings

dateAndTimeNow

returns Array whose first element is current date, and whose second element is the current time

addTime: timeAmount

returns Time that is timeAmount days after receiver

subtractTime: timeAmount

returns Date that is timeAmount before receiver

asSeconds

returns number of seconds since midnight that receiver represents

Magnitude->Character:

Creation:

value: anInteger

instance of Character which is the ASCII representation of anInteger

digitValue: anInteger

instance of Character which is the character representation of a munber of radix 35- $0 returns 0, $A returns 10, $Z returns 35

Operations:

asciiValue

returns Integer of ascii character

digitValue

returns Integer representing numerical radix

isAlphaNumeric

true if receiver is letter or digit

isDigit

true if receiver is digit

isLetter

true if receiver is letter

isLowercase

true if receiver is lowercase

isUppercase

true if receiver is uppercase

isSeparator

true if receiver is space, tab, cr, line feed, or form feed

isVowel

true if receiver is a,e,i,o,u

Magnitude->Number:

Creation:

Operations:

+ aNumber

returns sum of receiver and aNumber

- aNumber

returns difference of reciever and aNumber

* aNumber

returns result of mulitplying receiver by aNumber

/ aNumber

returns result of dividing receiver by aNumber. If result is not a whole number, then an instance of Fraction is returned

// aNumber

returns Integer result of division truncated toward negative infinity

\\ aNumber

returns Integer representing receiver modulus aNumber

abs

returns Number representing absolute value of receiver

negated

returns Number representing additive reciprocal

quo: aNumber

returns quotient of receiver divided by aNumber

rem: aNumber

returns remainder of receiver divided by aNumber

reciprocal

returns multiplicative reciprocal (1/reciever)

exp

returns e raised to the power of receiver

ln

returns natual log of receiver

log: aNumber

returns log base aNumber of receiver

floorLog: radix

returns floor of log base radix of reciever

raisedTo: aNumber

returns result of raising receiver to aNumber

raisedToInteger: anInteger

returns result of raising receiver to anInteger, where anInteger must be an Integer

sqrt

returns square root of receiver

squared

returns receiver raised to the second power

even

true if receiver is even

odd

true if receiver is odd

negative

true if receiver is <= 0

positive

true if receiver is >= 0

strictlyPositive

true if receiver > 0

sign

returns 1 if receiver > 0, 0 if receiver == 0. –1 if receiver < 0

ceiling

returns result of rounding towards positive infinity

floor

returns result of rounding towards negative infinity

truncated

returns result of rounding towards zero

truncateTo: aNumber

returns result of truncating to multiple of aNumber

rounded

returns result of rounding receiver

roundedTo: aNumber

returns result of rounding receiver to neastest multiple of aNumber

degreesToRadians

returns Float of radian representation of receiver. Assumes receiver is in degrees

radiansToDegrees

returns Float in degrees of conversion of receiver. Assumes receiver is in radians

sin

returns Float of sin(receiver) in radians

cos

returns Float of cos(receiver) in radians

tan

returns Float of tan(receiver) in radians

arcSin

returns Float of arcSin(receiver) in radians

arcCos

returns Float of arcCos(receiver) in radians

arcTan

returns Float of arcTan(receiver) in radians

coerce: aNumber

casts receiver as same type as aNumber

generality

returns the number respresenting the ordering of the receiver in the generality heirarchy

retry: aSymbol coercing: aNumber

an arithmetic operation aSymbol could not be performed, so the operation is retried casting the receiver or argument to aNumber (picking the lowest order of generality)

Magnitude->Number->Integer:

Creation:

Operations:

factorial

returns Integer representing the factorial of the receiver

gcd: anInteger

returns Integer representing the Greatest Common Denominator of the receiver and anInteger

lcm: anInteger

returns Integer representing the Lowest Common Multiple of the receiver and anInteger

allMask: anInteger

treat anInteger as a bit mask. Returns True if all 1’s in anInteger are 1 in the receiver

anyMask: anInteger

treat anInteger as a bit mask. Returns True if any on the 1’s in anInteger are 1 in the receiver

noMask: anInteger

treat an Integer as a bit mask. Returns True if none of the 1’s in anInteger are 1 in the receiver

bitAnd: anInteger

returns Integer representing a boolean AND operation between anInteger and the receiver

bitOr: anInteger

returns Integer representing a boolean OR operation between anInteger and the receiver

bitXor: anInteger

returns Integer representing a boolean XOR (eXclusive OR) operation between anInteger and the receiver

bitAt: anIndex

returns the bit (0 or 1) at anIndex

bitInvert

returns an Integer which is the complement of the receiver

highBit

returns an Integer representing the index of the highest order bit

bitShift: anInteger

returns an Integer whose value (in two’s-complement) is the receiver’s value shifted anInteger number of bits. Negative shifts are to the right.

Random

Creation:

:= Random new

instance representation of a random number generator

next

instance of a random rumber. The receiver must be a random number generator, which has previously been started

Operations:

Collection

Creation:

#(Object1, Object2, Object3, Object4)

instance representing an array containing up to 4 objects passed as arguments

new

instance representing an empty collection

new:

instance representing a collection

with: anObject

instance representing a collection containing anObject

with: firstObject with: secondObject

instance representing a collection containing firstObject and secondObject

Operations:

add: newObject

adds newObject to the receiver and returns newObject

addAll: aCollection

adds aCollection to the receiver and returns aCollection

remove: oldObject

removes oldObject from the receiver and returns oldObject unless there is no object oldObject (reports an error).

remove: oldObject ifAbsent: anExceptionBlock

removes oldObject from the receiver, unless it does not exist, in which case anExceptionBlock is executed. Returns oldObject or result of anExceptionBlock

removeAll: aCollection

removes all elements of aCollection from the receiver and returns aCollection, unless not all elements of aCollection were present in the receiver, in which case an error is reported.

includes: anObject

returns True if anObject is an element of the receiver

isEmpty

returns True if the receiver has no elements

occurrencesOf: anObject

returns an Integer representing the number of occurrences of anObject in the receiver

do: aBlock

evaluate aBlock for every element of the receiver

select: aBlock

evaluates aBlock for every element of the receiver. Returns a new Collection containing all elements of the receiver for which aBlock evaluated to true

reject: aBlock

evaluates aBlock for every element of the reciever. Returns a new Collection containing all elements for which aBlock evaluated to false

collect: aBlock

evaluates aBlock for every element of the receiver. Returns a new Collection containing the results of every evaluation of aBlock.

detect: aBlock

evaluates aBlock for every element of the receiver. Returns the object which is the first element in the receiver for which aBlock evaluated to true. If no object evaluated to true, an error is reported.

detect: aBlock ifNone: exceptionBlock

evaluates aBlock for every element of the receiver. Returns the object which is the first element in the receiver for which aBlock evaluated to true. If no object evaluated to true, exceptionBlock is evaluated.

inject: thisValue into: binaryBlock

Evaluates binaryBlock for each element of the receiver, initializing a local variable to thisValue. Returns final value of the block. BinaryBlock has two arguments.

asBag

Returns a Bag with the elements from the receiver

asSet

Returns a Set with the elements from the receiver

asOrderedCollection

Returns an OrderedCollection with the elements from the reciever

asSortedCollection

Returns a SortedCollection with the elements from the receiver, sorted to each element is less than or eaqual to its successor

asSortedCollection: aBlock

Returns a SortedCollection with the elements from the receiver, sorted according to the arguemnt aBlock

Collection->Bag

Creation:

Operations:

add: newObject withOccureneces: anInteger

Adds anInteger number of occurrences of newObject to the receiver, and returns newObject

Collection->Set

Creation:

Operations:

Collection->Set->Dictionary and Collection->Set->IdentityDictionary

Creation:

Operations:

at: key ifAbsent: aBlock

Returns the value named by key. If the key is not present in the dictionary, returns evaluation of aBlock

associationAt: key

Returns the association named by key. If key is not present, an error is reported

associationAt: key ifAbsent: aBlock

Returns the association named by key. If key is not present, returns the evaluation of aBlock.

keyAtValue: value

Returns the name found first for value, or nil if value is not present

keyAtValue: value ifAbsent: exceptionBlock

Returns the name found first for value, or the evaluation of exceptionBlock if value is not found

keys

Returns Set representing all of the receiver’s keys

values

Returns Set containing all of the receiver’s values

includesAssociation: anAssociation

Returns true if anAssociation is included in the receiver

includesKey: key

Returns true if key is included in the receiver

removeAssociation: anAssociation

Removes anAssociation from the receiver. Returns anAssociation

removeKey: key

Removes key and associated value from the receiver. Returns value associated with key if key is included in the receiver, otherwise an error is reported

removeKey: key ifAbsent: aBlock

Removes key and associated value from the receiver. Returns value associated with the key if key is included in the receiver, otherwise returns the evaluation of aBlock

associationsDo: aBlock

Evaluate aBlock for each of the receiver’s associations

keysDo: aBlock

Evaluate aBlock for each of the receiver’s keys

Collection->SequenceableCollection

Creation:

Operations:

atAll: aCollection put: anObject

Associate each element of aCollection with anObject.

atAllPut: anObject

Put anObject as every one of the receiver’s elements

first

Returns the first element of the receiver

last

Returns the last element of the receiver

indexOf: anElement

Returns an Integer representing the index of anElement in the receiver, 0 if not present

indexOf: anElement ifAbsent: exceptionBlock

Returns an Integer representing the index of anElement in the receiver, or the evaluation of exceptionBlock if anElement is not in the receiver

indexOfSubCollection: aSubCollection startingAt: anIndex

If the elements of aSubCollection appear in order in the receiver, returns the index of the first element of aSubCollection in the receiver, otherwise returns 0

indexOfSubCollection: aSubCollection: startingAt: anIndex ifAbsent: exceptionBlock

Returns the index of the first element of aSubCollection in the receiver if the elements of aSubCollection appear in order, otherwise returns the evaluation of aBlock

replaceFrom: start to: stop with: replacementCollection

Associates every element of the receiver from start to stop with the elements of replacementCollection and returns the receiver. The size of replacementCollection must equal start + stop + 1.

replaceFrom: start to: stop with: replacementCollection startingAt: repStart

Associates every element of the receiver from start to stop with the elements of replacementCollection starting with index repStart in replacementCollection. The receiver is returned

, aSequencableCollection

Returns the receiver concatenated with aSequencableCollection

copyFrom: start to: stop

Returns a subset of the receiver starting at index start and ending an index stop

copyReplaceAll: oldSubCollection with: newSubCollection

Returns a copy of the receiver with all occurrences of oldSubCollection replaced with newSubCollection

copyWith: newElement

Returns a copy of the receiver with newElement added on to the end

copyWithout: oldElement

Returns a copy of the receiver without all occurrences of oldElement

findFirst: aBlock

Evaluates aBlock for every element of the receiver and returns the index of the first element for which aBlock evaluates to true.

findLast: aBlock

Evaluates aBlock for each element of the receiver and returns the index of the last element for which aBlock evaluates to true

reverseDo: aBlock

Evaluates aBlock for each element of the receiver, starting with the last element

with: aSequenceableCollection do: aBlock

Evaluates aBlock for each element of the receiver and each element of aSequenceableCollection. The number of elements in aSequenceableCollection must equal the number of elements in the receiver and aBlock must have two arguements

Collection->SequenceableCollection->OrderedCollection

Creation:

Operations:

after: oldObject

Returns the element occurring after oldObject, or reports an error if oldObject is not found or is the last element

before: oldObject

Returns the element occurring before oldObject, or reports an error if oldObject is not found or is the first element

add: newObject after: oldObject

Inserts newObject after oldObject into the receiver and returns newObject unless oldObject is not found, in which case an error is reported

add: newObject before: oldObject

Inserts newObject before oldObject into the receiver and returns newObject unless oldObject is not found, in which case an error is reported

addAllFirst: anOrderedCollection

Adds each element of anOrderedCollection to the beginning of the receiver and returns anOrderedCollection

addAllLast: anOrderedCollection

Adds each element of anOrderedCollection to the end of the receiver and returns anOrderedCollection

addFirst: newObject

Adds newObject to the beginning of the receiver and returns newObject

addLast: newObject

Adds newObject to the end of the receiver and returns newObject

removeFirst

Removes the first object from the receiver and returns it, unless the receiver is empty in which case an error is reported

removeLast

Removes the last object from the receiver and returns it, unless the receiver is empty in which case an error is reported

Collection->SequenceableCollection->OrderedCollection->SortedCollection

Creation:

sortBlock: aBlock

Instance representing an empty SortedCollection using aBlock to sort its elements

Operations:

sortBlock

Returns the block that is to be used to sort the elements of the receiver

sortBlock: aBlock

Make aBlock the block used to sort the elements of the receiver

Collection->SequenceableCollection->LinkedList

Creation:

nextLink: aLink

Instance of Link that references aLink

Operations:

nextLink

Returns the receiver’s reference

nextLink: aLink

Sets the receiver’s reference to be aLink

addFirst: aLink

Adds aLink to the beginning of the receiver’s list and returns aLink

addLast: aLink

Adds aLink to the end of the receiver’s list and returns aLink

removeFirst

Removes the first element from the receiver’s list and returns it. If the list is empty an error is reported

removeLast

Removes the last element from the receiver’s list and returns it. If the list is empty an error is reported

Collection->SequenceableCollection->Interval

Creation:

from: startInteger to: stopInteger

Instance starting with the number startInteger and ending with stopInteger, incrementing by one

from: startInteger to: stopInteger by: stepInteger

Instance starting with the number startInteger and ending with stopInteger, incrementing by stepInteger

Operations:

Collection->SequenceableCollection->ArrayedCollection

Creation:

Operations:

Collection->SequenceableCollection->ArrayedCollection->CharacterArray->String

Creation:

Operations:

< aString

Returns true if the receiver collates before aString. Case is ignored.

<= aString

Returns true if the receiver collates before aString, or is the same as aString. Case is ignored.

> aString

Returns true if the receiver collates after aString. Case is ignored.

>= aString

Returns true if the receiver collates after aString, or is the same as aString. Case is ignored.

match: aString

Treats the receiver as a pattern containing #’s and *’s which are wild cards (# represents one character, * represents a substring). Returns true if the reciever matches aString. Case is ignored.

sameAs: aString

Returns true if the receiver collates exactly with aString. Case is ignored.

asLowercase

Returns a String representing the receiver in all lowercase

asUppercase

Returns a String representing the receiver in all uppercase

asSymbol

Returns a Symbol whose characters are the characters of the receiver

Collection->SequenceableCollection->ArrayedCollection->CharacterArray->Symbol

Creation:

intern: aString

Returns an instance of a Symbol whose characters are those of aString

internCharacter: aCharacter

Returns an instance of a Symbol which consists of aCharacter

Operations:

Collection->MappedCollection

Creation:

Operations:

Stream

Creation:

Operations:

next

Returns the next object accessible by the receiver

next: anInteger

Returns the next anInteger objects accessible by the receiver

nextMatchFor: anObject

Accesses the next object and returns true if it is equal to anObject

contents

Returns all of the objects in the collection accessed by the receiver.

nextPut: anObject

Stores anObject as the next object accessible by the receiver and returns anObject

nextPutAll: aCollection

Store the elements in aCollection as the next objects accessible by the receiver and returns aCollection. Advances the position reference to the new object.

next: anInteger put: anObject

Store anObject as the next anInteger number of objects accessible by the receiver and returns anObject. Advances the position reference to the new object.

atEnd

Returns true if the are no more objects accessible by the receiver

do: aBlock

Evaluate aBlock for each of the remaining objects accessible by the receiver

Stream->PositionableStream

Creation:

on: aCollection

Returns an instance which streams over aCollection

on: aCollection from: firstIndex to: lastIndex

Returns an instance which streams over a copy of a subcollection of aCollection from firstIndex to lastIndex

Operations:

isEmpty

Returns true if the collection the receiver accesses has no elements

peek

Returns the next object in the collection but does not increment the position reference

peekFor: anObject

Does a peek, if the next object is equal to anObject, then returns true and increments the position reference, otherwise just returns false

upTo: anObject

Returns a collection of the elements starting with the next object accessed by the receiver up to, but not including, anObject. If anObject is not an element of the remainder of the collection, then the entire remaining collection is returned.

position

Returns the receiver’s current position reference

position: anInteger

Sets the receiver’s position to anInteger. If anInteger exceeds the bounds of the collection, then an error is reported

reset

Sets the receiver’s position to the beginning of the collection

setToEnd

Sets the receiver’s position to the end of the collection

skip: anInteger

Sets the receiver’s position to the current position + anInteger

skipThrough: anObject

Sets the receiver’s position to be past ther next occurrence of anObject. Returns true if anObject occurs in the collection

Stream->PositionableStream->ReadStream

Creation:

Operations:

Stream->PositionableStream->WriteStream

Creation:

Operations:

cr

Stores the carriage return as the next element of the receiver

crtab

Stores the carriage return and a single tab as the next elements of the receiver

crtab: anInteger

Stores a carriage return follwed by anInteger number of tabs as the next elements of the receiver

space

Stores the space charater as the next element of the receiver

tab

Stores the tab character as the next element of the receiver

Stream->ExternalStream

Creation:

Operations:

nextNumber: n

Returns a SmallInteger or LargePositiveInteger representing the next n bytes of the collection accessed by the receiver

nextNumber: n put: v

Stores v, which is a SmallInteger or LargePositiveInteger, as the next n bytes of the collection accessed by the receiver

nextString

Returns a String consisting of the next elements of the collection accessed by the receiver

nextStringPut: aString

Stores aString in the collection accessed by the receiver

padTo: bsize

Skips to the next boundary of bsize characters and returns the number of characters skipped

padTo: bsize put: aCharacter

Skips to the next boundary of bsize characters, writing aCharacter to each character skipped, and returns the number of charcters skipped

padToNextWord

Skip to the next word (even) boundary and returns the number of characters skipped

padToNextWordPut: aCharacter

Skip to the next word (even) boundary, writing aCharacter to each character skipped, and returns the number of characters skipped

skipWords: nWords

Advance position reference nWords

wordPosition

Returns the current position in words

wordPosition: wp

Sets the position reference in words to wp

