Lecture 1 : What is an Object XE "Object" ?

· 2 Rules of Smalltalk

· Everything is an object

· Objects respond only to messages

· Ex: Automobile object

· Variables: velocity, weight, and color

· Methods: accelerate and decelerate

· What’s special about an Object?

· Objects contain both state and behavior and communicate with one another via messages.

· Automobile’s velocity variable is changed by accelerate method

· An application is a group of objects interacting in a coordinate fashion

· Stop light application manages many Automobile objects

· OO versus Procedural Approach XE "Procedural Approach" to programming

· Aspects of Procedural Approach

· Behavior is vested in the procedures

· Procedures must know data structures

· Procedures communicate only via data

· Procedural approach places too much emphasis on data, rather than the behavior of the application.

· Ex: Baker Procedural approach to baking cookies

· Has 2 structures: Baker structure and cookie structure

· Steps:

· Make pointer to a cookie struct

· Call bakeCookies(Baker, cookie), returns pointer to cookies

· Review aspects of Procedural Approach

· Aspects of OO Approach

· An application is a set of objects communicating via messages

· An Object’s functionality is described by its methods

· Data required to support an object’s functionality is stored in private variables

· Examples:

· Baker Object

· State

· Weight

· Height

· Name

· Method

· bakeCake()

· bakeCookies()
· Kitchen Application

· Objects

· Baker

· Chef

· Dishwasher

· Oven

· Procedural Approach

· Treat each object as a data structure. Each object must have its own data structure & variables.

· Write a function wash(). Note that 4 different functions must be written

· OO Approach

· Treat each object as object. Objects can inherit variables form each other.

· Write a method wash() that operates for all objects. (show in Smalltalk & C)

· Good Exercise for students: Use polymorphism for one object to do wash methods for Plates object and Cup object

· Good Exercise for students: write KitchenObject class.

KitchenObject subclass: #Baker

instanceVariableNames:'name weight height'

classVariableNames:''

PoolDictionaries:''

category:''

name

^name

name: aNewName

name := aNewName

bakeCake: ingredients

| cake |

cake := Cake new from: ingredients.

^cake

wash: dirtyDishes

dirtyDishes := dirtyDishes soak.

dirtyDishes := dirtyDishes scrub.

dirtyDishes := dirtyDishes dry.

^dirtyDishes

KitchenObject subclass: #Dishwasher

instanceVariableNames:'name weight height'

classVariableNames:''

PoolDictionaries:''

category:''

name

^name

name: aNewName

name := aNewName

wash: dirtyDishes

^ self runCycleOn: dirtyDishes

runCycleOn: someDishes

someDishes := someDishes rinse.

someDishes := dry.

class CKitchenObject : public CBaker {

public:

char* name;

int weight;

int weight;

public:

CCake bakeCake(CIngredients ingredients);

CDishes wash(CDishes dirtyDishes);

}

CCake CBaker::bakeCake(CIngredients ingredients)

{

CCake cake = new CCake(ingredients);

return cake;

}

CDishes CBaker::wash(CDishes dirtyDishes)

{

dirtyDishes.soak();

dirtyDishes.scrub();

dirtyDishes.dry();

return dirtyDishes;

}

class CKitchenObject : public CDishwasher {

public:

char* name;

int weight;

int height;

public:

CDishes wash(CDishes dirtyDishes);

}

CDishes CDishwasher::wash(CDishes dirtyDishes)

{

this.runCycleOn(dirtyDishes);

}

CDishes CDishwasher::runCycleOn(CDishes dirtyDishes)

{

dirtyDishes.rinse();

dirtyDishes.dry();

}
typedef struct {

char* name;

int height;

int weight;

} Worker;

Worker baker;

Worker dishwasher;

char* getName (Worker aWorker)

{

return aWorker.name;

}

void nameWorker(Worker aWorker, char* newName)

{

strcpy(aWorker.name, newName);

}

void bakeCake(Ingredient_struct* ingredients,

Cake* newCake)

{

newCake = doSomethingWith(ingredients);

}

void bakerWashDishes(Dishes* dirtyDishes)

{

soak(dirtyDishes);

scrub(dirtyDishes);

dry(dirtyDishes);

}

void dishwasherWashDishes(Dishes* dirtyDishes)

{

dirtyDishes = runCycleOn(dirtyDishes);

}

void runCycleOn(Dishes* dirtyDishes)

{

dirtyDishes = rinse(dirtyDishes);

dirtyDishes = dry(dirtyDishes);

}
Lecture 2: Classes and Instances

· Class XE "Class"
· A template for objects that share common characteristics.

· Includes an object’s state variable and methods

· Ex: Vehicle class

Vehicle

 Velocity

 Location

 Color

 Weight

Start()

Stop()

Accelerate()

· Instance XE "Instance"
· A particular occurrence of an object is defined by a class

· Classes are sometimes thought of as factories. If we had an automobile factory, the class would be the factory and the automobiles would be the instances of that factory.

· Each instance has its own values for instance variables

· Each automobile has its own engine, hood, doors, etc.

· All instances of a class share the same method

· Methods are the functions that are applicable to all instances of a class.

· The method accelerate is applicable to all automobiles

· Ex: A road contains many instances of vehicles, all different colors, going different speeds, starting, stopping, accelerating, etc

· Ex: cars on a road. It is important to note that car1 and car 3 are not the same object, but are the both instances of the class Car. car1 and car3 are equivalent, but not equal. Equality implies they are the same object.

aRoad = Road new.

car1 = Car new withColor: red withSpeed 30.

car2 = Car new withColor: blue withSpeed 45.

car3 = Car new withColor: red withSpeed 30.

· Class Hierarchy XE "Class Hierarchy"
· Allows sharing of state and behavior

· Subclasses are able to use the methods and variables of the parent classes.

· Each class refines / specializes its ancestors

· Child can add new state information

· A Land Vehicle adds the state information regarding the number of axles

· Child can add, extend or override parent behavior

· All Vehicles can be driven, but all types of vehicles require different sets of methods to drive

· Superclass is the parent and subclass is a child

· Abstract class holds common behavior & characteristics, concrete classes contain complete characterization of actual objects

· In the Vehicle example, Vehicle is the Superclass, and Sailboat, Speed boar, Jet, Helicopter, Car and Truck are the concrete classes.

[image: image1.wmf]Portfolio

 primaryAim

 secuties

 realEstate

calculatePortfolioWorth

calculatePortfolioRiskTaking

primaryAim

economicAnalysis

securities

realEstate

Instance

30 shares Microsoft

50 shares Intel

10 shares Citrix

Boardwalk

ParkPlace

Instances of

SecurituiesInvestment

Instances of

RealEstateInvestment

primeRate

EconomicModel

 primeRate

considerInvestmentAims

considerDivsersification

considerTakingProfit

Instance

Ex: Vehicle hierarchy (leaves are concrete, all other are abstract)

Lecture 3: Messages, Methods, and Programming in Smalltalk

· Messages XE "Messages"
· A message specifies what behavior an object is to perform

· Only way to communicate with an object

· Implementation is left up to the receiver object

· Ex: Ask the baker to bake a cake. We don’t care how he does it.

· Ex: baker bakeCake.
· State Information can only be accessed via messages

· Ex: I want to know how old you are (one of your state variables), so I ask you. I don’t care how you compute your age, all I care about is the answer.

· Ex: baker age.
· The receiver object always returns a result (object).

· A lot of the time a receiver is modified and it doesn’t make sense to return something, so the argument is returned

· Ex: #(a b c) at: 3 put: #d returns #d

· Methods XE "Methods"
· A method specifies how a receiver object performs a behavior.

· Executed in response to a message

· Must have access to data (must be passed, or contained in object)

· If there is no access passed or contained in the object, what can be done?

· Needs detailed knowledge of data

· Can manipulate data directly

· Can modify instance variables of the object receiving the message

· Ex: #(a b c) at: 3 put #d. modifies the collection which is the instance variable

· Returns an object as a result of its execution

· Since a method is executed in response to a message, and we have already said all messages return an object, it should only make sense that the method returns an object as the result of its execution

· Has same name as the message name

· Ex: #(a b c) size. size is the message called by the receiver, and the size method is the method in class Array to be executed

· Visual Works does no type checking on arguments, although the types should be type-compatible.

· Method returns the receiver object by default, unless explicitly returned

· Ex: Bob is asked to bake a cake. Bob’s ‘bake’ method explicitly says to return a cake, rather than returning himself to the requester.

· Ex: the at XE "at" : method of class Interval

· Explicitly returns a temp variable

at: anInteger

 "Answer the number at index position

 anInteger in the receiver interval."

 | answer |

 anInteger > 0

 ifTrue: [

 answer := beginning + (increment *(anInteger

 - 1)).

 (increment < 0

 and: [answer between: end and:

beginning])

 ifTrue: [^answer].

 (increment > 0

 and: [answer between: beginning and: end])

 ifTrue: [^answer]].

 ^self errorInBounds: anInteger

· Ex: the asString XE "asString" method of class String

· Returns the receiver (self)
asString

"Answer the string representing the

 receiver (the receiver itself)."

^self

· Programming in Smalltalk XE "Messages"
· Code is written and tested in small pieces

· Usually each method is tested after completion

· Smalltalk is interpreted

· Code is compiled into bytecode XE "bytecode" incrementally during development

· Once the code has been written, it is “accepted” and compiled into bytecode, then tested.

· Bytecode is interpreted by the Virtual Machine.

· The advantage to a Virtual Machine XE "Virtual Machine" is that different machines can have their own VM to interpret the bytecode. Thus, compiled code should be platform independent.

· Rather than compile all classes for each program, Smalltalk compiles all of the classes and methods into an “image XE "image" ”

Lecture 4: OO Classification Techniques

· The Vehicle Class Description

Object subclass: #Vehicle

instanceVariableNames: 'speed wheels'

classVariableNames: ''

PoolDictionaries: ''

category: ''.

withWeels: numberOfWheels goingSpeed: aSpeed

"Creates a new Vehicle Object"

| aNewVehicle |

aNewVehicle := self new.

aNewVehicle wheels := numberOfWheels.

aNewVehicle speed := aSpeed.

^aNewVehicle.

driveOn: aRoad

"Returns the reciever, does the driving"

self speed < aRoad speedLimit

ifTrue:

 [self speed := (self speed) + 1.

^self]

ifFalse:

 [self speed := (self speed) - 1.

^self].

· Specialization XE "Specialization"
· The act of creating a subclass of class. The new class inherits, overrides, and extends the behavior of the superclass.

· How?

· Add instance variables as needed

· Add, extend, or override methods as needed

· “is-a” relationship. An automobile “is-a” vehicle.

· Benefit- code reuse

· Ex: Class Vehicle exists before Class Automobile is invented. Class Automobile is invented, but based on the methods and variables of Class Vehicle.

[image: image2.wmf]Portfolio

 primaryAim

 secuties

 realEstate

calculatePortfolioWorth

calculatePortfolioRiskTaking

primaryAim

securities

realEstate

Instance

30 shares Microsoft

50 shares Intel

10 shares Citrix

Boardwalk

ParkPlace

Instances of

SecurituiesInvestment

Instances of

RealEstateInvestment

Vehicle subclass: #Automobile

instanceVariableNames: 'speed wheels engine'

classVariableNames: ''

PoolDictionaries: ''

category: ''.

withWheels: numberOfWheels goingSpeed: aSpeed withEngine: anEngine

"Create a new Automobile Object"

| aNewAuto |

aNewAuto := self new.

aNewAuto := Vehicle withWheels: numberOfWheels

goingSpeed: aSpeed.

aNewAuto engine := anEngine.

^aNewAuto.

driveOn: aRoad

"Returns the receiver, does the driving"

self speed < aRoad speedLimit

ifTrue: [self engine accelerate. ^self]

ifFalse: [self engine decelerate. ^self].

· Abstraction XE "Abstraction"
· The act of creating a superclass for several classes.

· How?

· Identify the shared state and /or behavior across the classes

· Move shared properties to the new abstract superclass

· Interpose the new abstract superclass in the class hierarchy

· Benefit: code reuse, simplify maintenance, better understanding

· [image: image3.wmf]Investment

 currentValue

 purchasePrice

 datePurchased

calculateGainOrLoss

calulateTax

calculateAnnualIncome

Stock

 name

 sharesOutstanding

calculateVolatility

calulateTax

Bond

 issuerName

 maturityDate

updateRating

calulateTax

MutualFund

 name

 sharePrice

 sharesOutstanding

currentNetAssetValue

calulateTax

RentalProperty

calculateValue

calculateDepreciation

calulateTax

Home

calculateValue

calulateTax

SecuritiesInvestment

 priceEarningsRatio

calculatePriceEarningRatio

RealEstateInvestment

 location

calculateValue

Example

· Example:

[image: image4.wmf]object

Stock

 name

 priceEarningsRatio

 sharesOutstanding

 currentValue

 purchasePrice

 datePurchased

calculateVolatility

calculatePriceEarningRatio

calculateGainOrLoss

calulateTax

calculateAnnualIncome

Bond

 issuerName

 maturityDate

 priceEarningsRatio

 currentValue

 purchasePrice

 datePurchased

updateRating

calculatePriceEarningRatio

calculateGainOrLoss

calulateTax

calculateAnnualIncome

MutualFund

 name

 sharePrice

 priceEarningsRatio

 sharesOutstanding

 currentValue

 purchasePrice

 datePurchased

currentNetAssetValue

calculatePriceEarningRatio

calculateGainOrLoss

calulateTax

calculateAnnualIncome

RentalProperty

 location

 currentValue

 purchasePrice

 datePurchased

calculateValue

calculateDepreciation

calculateGainOrLoss

calulateTax

calculateAnnualIncome

Home

 location

 currentValue

 purchasePrice

 datePurchased

calculateValue

calculateGainOrLoss

calulateTax

calculateAnnualIncome

· Composition XE "Composition"
· The act of creating a class that is composed of instances of other classes (via instance variables). The new class does not inherit form the other classes, but can access their state and behavior via messages.

· How?

· Create a new class that is composed of other classes

· Attributes of the new class are instances of other classes

· The new class obtains the behavior of composition classes by sending messages to the referenced instances (“delegation”).

· Benefit: provides protection from changes in referenced classes.

· Behavior is not inherited

· “has-a” relationship (also known as “is-part-of”).

· Ex: An instance of class Airplane might be composed of instances of the class variables Engine, Position, and Velocity.

· Engine points to an instance of class Engine (user defined)

· Position points to an instance of class Position (user defined)

· Velocity points to an instance of Visual Works system class, Float.

· An Airplane “has-a” Engine, Position, and Velocity.

[image: image5.wmf]Airplane

engine

position

velocity

takeOff()

land()

Engine

thrust

fuel

increaseThrust()

decreaseThrust()

Formal

arguments

AnAirplane

engine

position

velocity

Formal

arguments

anEngine

thrust

fuel

Formal

arguments

aCoordinate

latitude

longitude

altitude

Formal

arguments

aFloat

0.0

Float

Coordinate

latitude

longitude

altitude

altitude()

{constraints}

x

1

x

1

x

1

x

1

· Factorization XE "Factorization"
· The act of breaking a class into smaller classes.

· How?

· Factor the class into smaller classes

· Create a new class for each distinct type of state / behavior

· Recombine the new classes via inheritance and /or composition to achieve original functionality.

· Example: break the class Animal into different Species Classes

· Benefit: Potential reusable, smaller classes

Object subclass: #Vehicle

instanceVariableNames: 'speed wheels'

classVariableNames: ''

PoolDictionaries: ''

category: ''.

withWeels: numberOfWheels goingSpeed: aSpeed

"Creates a new Vehicle Object"

| aNewVehicle |

aNewVehicle := self new.

aNewVehicle wheels := numberOfWheels.

aNewVehicle speed := aSpeed.

^aNewVehicle.

driveOn: aRoad

"Returns the reciever, does the driving"

self speed > aRoad speedLimit

ifTrue:

 [self speed := (self speed) + 1. ^self]

ifFalse:

 [self speed := (self speed) - 1. ^self].

#Vehicle subclass: #TwoWheel

instanceVariableNames: 'speed wheels balance'

classVariableNames: ''

PoolDictionaries: ''

category: ''.

withWeels: numberOfWheels goingSpeed: aSpeed

"Creates a new Vehicle Object"

| aNewVehicle |

aNewVehicle := self new.

aNewVehicle wheels := 2.

aNewVehicle speed := aSpeed.

^aNewVehicle.

driveOn: aRoad

"Returns the reciever, does the driving"

self balnce = nil

ifTrue: [self speed := 0. ^self].

self speed < aRoad speedLimit

ifTrue:

 [self speed := (self speed) + 1. ^self]

ifFalse:

 [self speed := (self speed) - 1. ^self].

#Vehicle subclass: #FourWheel

instanceVariableNames: 'speed wheels fourWheelDrive'

classVariableNames: ''

PoolDictionaries: ''

category: ''.

withWeels: numberOfWheels goingSpeed: aSpeed

isFourWheelDrive: anAnswer

"Creates a new Vehicle Object"

| aNewVehicle |

aNewVehicle := self new.

aNewVehicle wheels := 4.

aNewVehicle speed := aSpeed.

aNewVehicle fourWheedDrive := anAnswer.

^aNewVehicle.

driveOn: aRoad

"Returns the reciever, does the driving"

self speed < aRoad speedLimit

ifTrue:

 [self speed := (self speed) + 1. ^self]

ifFalse:

 [self speed := (self speed) - 1. ^self].

Lecture 5: Encapsulation & Polymorphism

· Encapsulation XE "Encapsulation"
· Objects encapsulates State as a collection of variables

· Common practice is to provide a set of private methods for manipulating variables.

· Example: Baker has work state (ie rolling dough, baking, resting)

· baker state. Returns the baker’s state

· baker state: ‘baking’. Sets the baker’s state

· Example: The class Engine

· In the previous lecture we looked the the Automobile class. When we created an instance of the class Automobile, we assumed the instance creation was called with an instance of Engine as an argument

· An engine must have many private methods. When you turn the ignition, you don’t have to start each component of the engine individually. Lets look at a simple engine class

Object subclass: #Engine

instanceVariableNames: 'state pistons battery'

classVariableNames: ''

PoolDictionaries: ''

category: ''.

start

"Starts up the engine"

self startEachComponent.

^status.

private

startEachComponent

"Checks to see if the battery is charged, and

tries to start the pistons"

status := true.

pistons := Pistons new.

battery := Battery new.

battery status

ifFalse: [status := false].

pistons start

ifFalse: [status := false].

· Objects encapsulates Behavior XE "Behavior" as methods invoked by messages

· Set of methods encompasses everything the object knows how to do

· Ex: Baker has setState method to set stateVariable, and queryState to get stateVariable’s value:
setState: aValue

stateVariable=aValue.

queryState

^StateVariable.

Baker Bob do: ‘resting’.

Bob queryState.

· Encapsulation protects the state information of an object

· Legal Example: Baker object can access thoughts (read and write)

· Illegal Example: Someone else cannot read the baker’s thoughts.

· Encapsulation hides implementation details

· Don’t care how baker bakes cake.

· Encapsulation provides a uniform interface for communicating with an object.

· We can ask the baker to bake a cake, or we can ask the chef to bake a cake. They will do it differently, but we can ask them the same way.

· Facilitates modularity, code reuse and maintenance.

· Side note: C++ faq claims encapsulation does not facilitate code-reuse, this is an important difference in the language C++ programmers should consider.

· Polymorphism XE "Polymorphism"
· Variety of objects in an application that exhibit the same generic behavior, but implement it differently

· Ex: Ask a dog to speak, it barks. Ask a cat to speak, it meows. Each animal can be asked to speak, and each will do it differently.

· Ex: The + operator for class Float and class Integer

· Float:

+ aNumber

 "Answer sum of the receiver and aNumber."

 | result |

 <primitive: 41>

 aNumber isFloat

 ifTrue: [

result := self class basicNew: 8.

FloatLibrary add: self to: aNumber result:

result.

 ^result]

 ifFalse: [^self + aNumber asFloat]
· Integer:

+ aNumber

 "Answer the sum of the receiver and aNumber."

 <primitive: 21>

 ^aNumber + self
Lecture 6: OO 4-Pass Process – an Investment Manager

· Pass 1: Abstraction XE "Abstraction"
· Abstrction to share state/ behavior common to all investemnts

· Pass 2: Abstraction XE "Abstraction"
· Abstraction to share state / behavior for securities objects vr. Real estate investment objects

· Pass 3: Composition XE "Composition"
· Composition to create a portfolio of investments with a primary investment plan

· Pass 4: Factorization XE "Factorization"
· Factorization to make explicit an anaysis of economic conditions related to investments

· Problem Statement: Design an Investment manager to handle stocks, bonds, mutual funds, houses and rental property

· Initial Design

· What functionality do all investments share?

· They all have currentValue, purchasePrice and datePurchased instance variables and calculateGainOrLoss, calculateTax and calculateAnnualIncome methods.

· These variables and methods can be considered as the basis of creating a new, abstract superclass for the investments.

[image: image6.wmf]Cheetah

speed

family

speak()

x

1

x

1

x

1

Dog

speed

family

speak()

Gorilla

speed

family

speak()

Animal

speed

family

speak()

· Design Pass 1 (abstraction)

· We can use abstraction to produce a new class, Investment. This is an abstact class that serves as the superclass for the concrete investment classes. It holds state variables and methods common to all investments

[image: image7.wmf]Vehicle

speed

wheels

drive

Automobile

engine

Bicycle

Carriage

horses

4-Wheeled

· Design Pass 2 (abstraction)

· We now produce two new abstract classes:

· SecuritiesInvestment to hold commonalties between Stock, Bond, and MutualFund.

· RealEstateInvestemnt to hold commonalties between Home and RentalProperty.

[image: image8.wmf]Vehicle

speed

wheels

driveOn

Automobile

engine

Bicycle

Carriage

horses

· Design Pass 3 (composition)

· Now we create a Portfolio class to hold all of the primary investment aim (risk level) and the collection of investments.

· We’ll create two state variables which hold the two collections of objects made up from the two classed defined in Pass 2.

[image: image9.wmf]Vehicle

velocity

 location

Water Vehicle

Air Vehicle

Land Vehicle

axles

Sailboat

Speed boat

Jet

Helicopter

Car

color

weight

Truck

· Design Pass 4 (factorizarion)

· In the final pass, we factor out “economic model” state and behavior as apotentially reusable part of Portfolio, and create the new class EconomicModel. This class lives outside the hierachy, and becomes part of the Portfolio via composition.

· Remember factorization has two components

· Break up large, complex classes into separate, more reusable components

· Recover the original functionality through composition or inheritance.

· How did we know to use composition instead of inheritance?

· Which makes more sense:

· “is-a” EconomicModel a Portfolio? (Inheritance)

· Is an EconomicModel “part-of” a portfolio? (Composition)

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

[image: image10.wmf]Vehicle

velocity

 location

Water Vehicle

Air Vehicle

Land Vehicle

axles

Sailboat

Speed boat

Jet

Helicopter

Car

color

weight

Truck

[image: image11.wmf]Vehicle

speed

wheels

driveOn

Automobile

engine

Bicycle

Carriage

horses

[image: image12.wmf]Vehicle

speed

wheels

drive

Automobile

engine

Bicycle

Carriage

horses

4-Wheeled

[image: image13.wmf]Cheetah

speed

family

speak()

x

1

x

1

x

1

Dog

speed

family

speak()

Gorilla

speed

family

speak()

Animal

speed

family

speak()

[image: image14.wmf]Airplane

engine

position

velocity

takeOff()

land()

Engine

thrust

fuel

increaseThrust()

decreaseThrust()

Formal

arguments

AnAirplane

engine

position

velocity

Formal

arguments

anEngine

thrust

fuel

Formal

arguments

aCoordinate

latitude

longitude

altitude

Formal

arguments

aFloat

0.0

Float

Coordinate

latitude

longitude

altitude

altitude()

{constraints}

x

1

x

1

x

1

x

1

[image: image15.wmf]object

Stock

 name

 priceEarningsRatio

 sharesOutstanding

 currentValue

 purchasePrice

 datePurchased

calculateVolatility

calculatePriceEarningRatio

calculateGainOrLoss

calulateTax

calculateAnnualIncome

Bond

 issuerName

 maturityDate

 priceEarningsRatio

 currentValue

 purchasePrice

 datePurchased

updateRating

calculatePriceEarningRatio

calculateGainOrLoss

calulateTax

calculateAnnualIncome

MutualFund

 name

 sharePrice

 priceEarningsRatio

 sharesOutstanding

 currentValue

 purchasePrice

 datePurchased

currentNetAssetValue

calculatePriceEarningRatio

calculateGainOrLoss

calulateTax

calculateAnnualIncome

RentalProperty

 location

 currentValue

 purchasePrice

 datePurchased

calculateValue

calculateDepreciation

calculateGainOrLoss

calulateTax

calculateAnnualIncome

Home

 location

 currentValue

 purchasePrice

 datePurchased

calculateValue

calculateGainOrLoss

calulateTax

calculateAnnualIncome

[image: image16.wmf]Investment

 currentValue

 purchasePrice

 datePurchased

calculateGainOrLoss

calulateTax

calculateAnnualIncome

Stock

 name

 sharesOutstanding

calculateVolatility

calulateTax

Bond

 issuerName

 maturityDate

updateRating

calulateTax

MutualFund

 name

 sharePrice

 sharesOutstanding

currentNetAssetValue

calulateTax

RentalProperty

calculateValue

calculateDepreciation

calulateTax

Home

calculateValue

calulateTax

SecuritiesInvestment

 priceEarningsRatio

calculatePriceEarningRatio

RealEstateInvestment

 location

calculateValue

[image: image17.wmf]Portfolio

 primaryAim

 secuties

 realEstate

calculatePortfolioWorth

calculatePortfolioRiskTaking

primaryAim

securities

realEstate

Instance

30 shares Microsoft

50 shares Intel

10 shares Citrix

Boardwalk

ParkPlace

Instances of

SecurituiesInvestment

Instances of

RealEstateInvestment

[image: image18.wmf]Portfolio

 primaryAim

 secuties

 realEstate

calculatePortfolioWorth

calculatePortfolioRiskTaking

primaryAim

economicAnalysis

securities

realEstate

Instance

30 shares Microsoft

50 shares Intel

10 shares Citrix

Boardwalk

ParkPlace

Instances of

SecurituiesInvestment

Instances of

RealEstateInvestment

primeRate

EconomicModel

 primeRate

considerInvestmentAims

considerDivsersification

considerTakingProfit

Instance

_963697366.vsd
object�

Stock
 name
 priceEarningsRatio
 sharesOutstanding
 currentValue
 purchasePrice
 datePurchased
calculateVolatility
calculatePriceEarningRatio
calculateGainOrLoss
calulateTax
calculateAnnualIncome�

Bond
 issuerName
 maturityDate
 priceEarningsRatio
 currentValue
 purchasePrice
 datePurchased
updateRating
calculatePriceEarningRatio
calculateGainOrLoss
calulateTax
calculateAnnualIncome�

MutualFund
 name
 sharePrice
 priceEarningsRatio
 sharesOutstanding
 currentValue
 purchasePrice
 datePurchased
currentNetAssetValue
calculatePriceEarningRatio
calculateGainOrLoss
calulateTax
calculateAnnualIncome�

RentalProperty
 location
 currentValue
 purchasePrice
 datePurchased
calculateValue
calculateDepreciation
calculateGainOrLoss
calulateTax
calculateAnnualIncome�

Home
 location
 currentValue
 purchasePrice
 datePurchased
calculateValue
calculateGainOrLoss
calulateTax
calculateAnnualIncome�

_963699208.vsd
Portfolio
 primaryAim
 secuties
 realEstate
calculatePortfolioWorth
calculatePortfolioRiskTaking�

primaryAim
securities
realEstate�

Instance�

30 shares Microsoft�

50 shares Intel�

10 shares Citrix�

Boardwalk�

ParkPlace�

Instances of SecurituiesInvestment�

Instances of RealEstateInvestment�

_963699824.vsd
Portfolio
 primaryAim
 secuties
 realEstate
calculatePortfolioWorth
calculatePortfolioRiskTaking�

primaryAim
economicAnalysis
securities
realEstate�

Instance�

30 shares Microsoft�

50 shares Intel�

10 shares Citrix�

Boardwalk�

ParkPlace�

Instances of SecurituiesInvestment�

Instances of RealEstateInvestment�

primeRate�

EconomicModel
 primeRate
considerInvestmentAims
considerDivsersification
considerTakingProfit�

Instance�

_963698183.vsd
Investment
 currentValue
 purchasePrice
 datePurchased
calculateGainOrLoss
calulateTax
calculateAnnualIncome�

Stock
 name
 sharesOutstanding
calculateVolatility
calulateTax
�

Bond
 issuerName
 maturityDate
updateRating
calulateTax�

MutualFund
 name
 sharePrice
 sharesOutstanding
currentNetAssetValue
calulateTax�

RentalProperty
calculateValue
calculateDepreciation
calulateTax�

Home
calculateValue
calulateTax�

RealEstateInvestment
 location
calculateValue
�

SecuritiesInvestment
 priceEarningsRatio
calculatePriceEarningRatio
�

_963676966.vsd
Cheetah
speed
family
speak()�

Dog
speed
family
speak()�

Gorilla
speed
family
speak()�

Animal
speed
family
speak()�

_963677150.vsd
Airplane
engine
position
velocity
takeOff()
land()�

Engine
thrust
fuel
increaseThrust()
decreaseThrust()
�

AnAirplane
engine
position
velocity�

anEngine
thrust
fuel�

aCoordinate
latitude
longitude
altitude�

aFloat
0.0�

Float�

Coordinate
latitude
longitude
altitude
altitude()
{constraints}�

_963686021.vsd
Vehicle
speed
wheels
driveOn�

Automobile
engine�

Bicycle�

Carriage
horses�

_963676884.vsd
Vehicle
speed
wheels
drive�

Automobile
engine�

Bicycle�

Carriage
horses�

4-Wheeled
�

_963676360.vsd
Vehicle
 velocity
 location
�

Water Vehicle�

Air Vehicle�

Land Vehicle
axles�

Sailboat�

Speed boat�

Jet�

Helicopter�

Car
color
weight�

Truck�

