
Stéphane Ducasse «ChapterNr».1

Arthur Riel Design Heuristics
• from Object-Oriented Design Heuristics by
Arthur Riel

• Read the Heuristics…
– Find reasons why
– We will discuss them during the lectures

Stéphane Ducasse «ChapterNr».2

Different Relationship
• Uses
• Contains
• Specializes

Stéphane Ducasse «ChapterNr».3

Hidding Data
• All data should be hidden within its class

Stéphane Ducasse «ChapterNr».4

No Dependence on Clients
• Users of a class must be dependent on its
public interface, but a class should not be
dependent on its users

Stéphane Ducasse «ChapterNr».5

Support Class = one Clear Responsibility
• Minimize the number of messages in the
protocol of a class

Stéphane Ducasse «ChapterNr».6

Supporting Polymorphism and Communication
• Implement a minimal interface that all classes
understand

• To send the same message to different
objects

• To be able to substitute them
Remember:
grObjects do: [:each | each translate: 10@10]

• Example: Object>>printString, Object>>copy…

Stéphane Ducasse «ChapterNr».7

Clear Public Interface
• Do not put implementations details such as
common-code private functions into the public
interface of a class

• Example:
– Private/protected in C++
– Private method categories in Smalltalk

• Do not clutter the public interface of a class
with items that clients are not able to use or
are not interested in using

Stéphane Ducasse «ChapterNr».8

Minimize Classes Interdependencies
• A class should only use operations in the
public interface of another class or have
nothing to do with that class

Stéphane Ducasse «ChapterNr».9

Support a Class = one Responsibility
• A class should capture one and only one key
abstraction

Stéphane Ducasse «ChapterNr».10

Strengthen Encapsulation
• Keep related data and behavior in one place
• Spin off non related information into another
class

• -> Move Data Close to Behavior

Stéphane Ducasse «ChapterNr».11

Object: a Cohesive Entity
• Most of the methods defined on a class
should be using most of the instance variables
most of the time

Stéphane Ducasse «ChapterNr».12

Roles vs. Classes
• Be sure the abstractions you model are
classes and not the roles objects play

• Are mother and father classes or role of
Person?

• No magic answer: Depend on the domain
• Do they have different behavior? So they are
more distinct classes

Stéphane Ducasse «ChapterNr».13

Support one Class = one Responsibility
• Distribute system intelligence horizontally as
uniformly as possible, i.e., the top-level
classes in a design should share the work

Stéphane Ducasse «ChapterNr».14

Support one Class = one Responsibility
• Do not create god classes/objects (classes
that control all other classes). Be very
suspicious of class whose names contains
Driver, Manager, System, SubSystem

Stéphane Ducasse «ChapterNr».15

Model and Interfaces
• Model should never be dependent on the
interface that represents it. The interface
should be dependent on the model

• What is happening if you want two different
Uis for the same model?

Stéphane Ducasse «ChapterNr».16

Basic Checks for God Class Detection
• Beware of classes that have many accessor
methods defined in their public interface.
May imply that data and behavior is not being
kept at the same place

• Beware of classes having methods that only
operate on a proper subset of the instance
variables.

Stéphane Ducasse «ChapterNr».17

One Class: One Responsibility
• One responbility: coordinating and using other
objects

– OrderedCollection maintains a list of objects
sorted by arrival order: two indexes and a list

• Class should not contain more objects than a
developper can fit in his short-term memory.
(6 or 7 is the average value)

Stéphane Ducasse «ChapterNr».18

Classes Evaluation
• Model the real world whenever possible

• Eliminate irrelevant classes

• Eliminate classes that are outside of the
system

• A method is not a class. Be suspicious of any
class whose name is a verb or derived from a
verb, especially those that only one piece of
meaningful behavior

Stéphane Ducasse «ChapterNr».19

Minimizing Coupling between Classes
• Minimize the number of classes with which
another class collaborates

• Minimize the number of messages sent
between a class and its collaborators

– Counter example: Visitor patterns
• Minimize the number of different messages
sent between a class and its collaborators

Stéphane Ducasse «ChapterNr».20

About the Use Relationship
• When an object use another one it should get
a reference on it to interact with it

• Ways to get references
– (containment) instance variables of the class
– Passed has argument
– Ask to a third party object (mapping…)
– Create the object and interact with it (coded in

class: kind of DNA)

Stéphane Ducasse «ChapterNr».21

Containment and Uses
• If a class contains object of another class,
then the containing class should be sending
messages to the contained objects (the
containment relationship should always imply a
uses relationships)

• A object may know what it contains but it
should not know who contains it.

Stéphane Ducasse «ChapterNr».22

Representing Semantics Constraints
• How do we represent possibilities or
constraints between classes?

– Appetizer, entrée, main dish…
– No peas and corn together…

• It is best to implement them in terms of class
definition but this may lead to class
proliferation

• => implemented in the creation method

Stéphane Ducasse «ChapterNr».23

Objects define their logic
• When implementing semantic constraints in
the constructor of a class, place the
constraint definition as far down a
containment hierarchy as the domain allows

=> Objects should contain the semantic
constraints about themselves

Stéphane Ducasse «ChapterNr».24

Third party constraint holder
• If the logic of a constraint is volatile, then it
is better to

Stéphane Ducasse «ChapterNr».25

Classes - Subclasses
• Superclass should not know its subclasses

• Subclasses should not use directly data of
superclasses

• If two or more classes have common data and
behavior, they should inherit from a common
class that captures those data and behavior

Stéphane Ducasse «ChapterNr».26

Controversial
• All abstract classes must be base classes

• All base classes should be abstract classes
– > Not true they can have default value method

Stéphane Ducasse «ChapterNr».27

Fundamental: Avoid Type Checks
• Explicit case analysis on the type of an
objects is usually an error.

• An object is responsible of deciding how to
answer to a message

• A client should send message and not
discriminate messages sent based on receiver
type

