
Stéphane Ducasse 9.1

Some Basic Points on Classes
• Class definition
• Method definition
• Basic class instantiation

Stéphane Ducasse 9.2

Class Definition: The Class Packet
A template is proposed by the browser:

NameOfSuperclass subclass: #NameOfClass
 instanceVariableNames: 'instVarName1 instVarName2'
 classVariableNames: 'ClassVarName1 ClassVarName2'
 poolDictionaries: ''
 category: 'CategoryName’

Just fill this Template in:
Object subclass: #Packet

instanceVariableNames: 'contents addressee originator '
classVariableNames: ''
poolDictionaries: ''
category: 'LAN-Simulation’

Automatically a class named “Packet class” is created. Packet is the
unique instance of Packet class. To see it, click on the class button in
the browser

Stéphane Ducasse 9.3

Named Instance Variables
NameOfSuperclass subclass: #NameOfClass
 instanceVariableNames: 'instVarName1 instVarName2'
 ...
Object subclass: #Packet

instanceVariableNames: 'contents addressee originator '
...

• Begins with a lowercase letter
• Explicitly declared: a list of instance variables
• Name should be unique in the inheritance chain
• Default value of instance variable is nil
• Private to the instance: instance based (vs. C++ class-based)
• Can be accessed by all the methods of the class and its

subclasses (instance methods)
• Instance variables cannot be accessed by class methods.
• A client cannot directly access instance variables.
• The clients must use accessor methods to access an instance

variable.

Stéphane Ducasse 9.4

Method Definition
Fill in the template. For example:

Packet>>defaultContents
“returns the default contents of a Packet”
^ ‘contents no specified’

Workstation>>originate: aPacket
aPacket originator: self.
self send: aPacket

How to invoke a method on the same object? Send the message to
self

Packet>>isAddressedTo: aNode
“returns true if I’m addressed to the node aNode”
^ self addressee = aNode name

Stéphane Ducasse 9.5

Accessing Instance Variables
Using direct access for the methods of the class

Packet>>isSentBy: aNode
^ originator = aNode

is equivalent to use accessors
Packet>>originator

^ originator

Packet>>isSentBy: aNode
^ self originator = aNode

Design Hint: Do not directly access instance variables of a
superclass from the subclass methods. This way classes will not
be strongly linked at the structure level.

Stéphane Ducasse 9.6

Methods always return a Value
• Message = effect + return value
• By default, a method returns self
• In a method body, the ^ expression returns the value of the

expression as the result of the method execution.

Node>>accept: thePacket
 "Having received the packet, send it on. This is the default behavior."
 self send: thePacket

• This is equivalent to:
Node>>accept: thePacket
 "Having received the packet, send it on. This is the default behavior."
 self send: thePacket.
 ^self

Stéphane Ducasse 9.7

Methods always return a value
• If we want to return the value returned by #send:
Node>>accept: thePacket

"Having received the packet, send it on. This is the default
behavior."

^self send: thePacket.

• Use ^ self to notify the reader that something
abnormal is arriving

MyClass>>foo

… ^ self

Stéphane Ducasse 9.8

Some Naming Conventions
• Shared variables begin with an upper case
letter

• Private variables begin with a lower case
letter

• For accessors, use the same name as the
instance variable accessed:

Packet>>addressee
^ addressee

Packet>>addressee: aSymbol
addressee := aSymbol

Stéphane Ducasse 9.9

Some Naming Conventions
• Use imperative verbs for methods performing
an action like #openOn:, #close, #sleep

• For predicate methods (returning a boolean)
prefix the method with is or has

 isNil, isAddressedTo:, isSentBy:
• For converting methods prefix the method
with as

 asString

Stéphane Ducasse 9.10

Object Instantiation

• Objects can be created by:
– Direct Instance creation:

(basic)new/new:
– Messages to instances that create other objects
– Class specific instantiation messages

Stéphane Ducasse 9.11

Instance Creation
• aClass new/basicNew returns a newly and UNINITIALIZED

instance
OrderedCollection new -> OrderedCollection ()
Packet new -> aPacket

• Instance variable values = nil
• Messages to Instances that create Objects

1 to: 6 (an interval)
1@2 (a point)
(0@0) extent: (100@100) (a rectangle)
#lulu asString (a string)
1 printString (a string)
3 asFloat (a float)
#(23 2 3 4) asSortedCollection (a sortedCollection)

Stéphane Ducasse 9.12

Opening the Box
1 to: 6 -> an Interval
Number>>to: stop
 "Answer an Interval from the receiver up to the argument, stop,

with each next element computed by incrementing the previous
one by 1."
^Interval from: self to: stop by: 1

1 printString -> aString
Object>>printString
 "Answer a String whose characters are a description of the

receiver."
| aStream |
aStream := WriteStream on: (String new: 16).
self printOn: aStream.
^aStream contents

Stéphane Ducasse 9.13

Instance Creation
1@2 -> aPoint

Number>>@ y
 "Answer a new Point whose x value is the receiver

and whose y value is the argument."
<primitive: 18>
^Point x: self y: y

Stéphane Ducasse 9.14

Class-specific Instantiation Messages
• Array with: 1 with: 'lulu'
• OrderedCollection with: 1 with: 2 with: 3
• Rectangle fromUser -> 179@95 corner: 409@219
• Browser browseAllImplementorsOf: #at:put:
• Packet send: ‘Hello mac’ to: #mac
• Workstation withName: #mac

Stéphane Ducasse 9.15

New and basicNew
• #new:/basicNew: is used to specify the size of the

created instance

 Array new: 4 -> #(nil nil nil nil)

• #new/#new: can be specialized to define customized
creation

• #basicNew/#basicNew: should never be overridden
• #new/basicNew and new:/basicNew: are class

methods

