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Some Basic Points on Classes
• Class definition
• Method definition
• Basic class instantiation
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Class Definition: The Class Packet
A template is proposed by the browser:

NameOfSuperclass subclass: #NameOfClass
   instanceVariableNames: 'instVarName1 instVarName2'
   classVariableNames: 'ClassVarName1 ClassVarName2'
   poolDictionaries: ''
   category: 'CategoryName’

Just fill this Template in:
Object subclass: #Packet

instanceVariableNames: 'contents addressee originator '
classVariableNames: ''
poolDictionaries: ''
category: 'LAN-Simulation’

Automatically a class named “Packet class” is created. Packet is the
unique instance of Packet class. To see it, click on the class button in
the browser
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Named Instance Variables
NameOfSuperclass subclass: #NameOfClass
   instanceVariableNames: 'instVarName1 instVarName2'
   ...
Object subclass: #Packet

instanceVariableNames: 'contents addressee originator '
...

• Begins with a lowercase letter
• Explicitly declared: a list of instance variables
• Name should be unique in the inheritance chain
• Default value of instance variable is nil
• Private to the instance: instance based (vs. C++ class-based)
• Can be accessed by all the methods of the class and its

subclasses (instance methods)
• Instance variables cannot be accessed by class methods.
• A client cannot directly access instance variables.
• The clients must use accessor methods to access an instance

variable.
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Method Definition
Fill in the template. For example:

Packet>>defaultContents
“returns the default contents of a Packet”
^ ‘contents no specified’

Workstation>>originate: aPacket
aPacket originator: self.
self send: aPacket

How to invoke a method on the same object? Send the message to
self

Packet>>isAddressedTo: aNode
“returns true if I’m addressed to the node aNode”
^ self addressee = aNode name
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Accessing Instance Variables
Using direct access for the methods of the class

Packet>>isSentBy: aNode
^ originator = aNode

is equivalent to use accessors
Packet>>originator

^ originator

Packet>>isSentBy: aNode
^ self originator = aNode

Design Hint: Do not directly access instance variables of a
superclass from the subclass methods. This way classes will not
be strongly linked at the structure level.
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Methods always return a Value
• Message = effect + return value
• By default, a method returns self
• In a method body, the ^ expression returns the value of the

expression as the result of the method execution.

Node>>accept: thePacket
   "Having received the packet, send it on. This is the default behavior."
   self send: thePacket

• This is equivalent to:
Node>>accept: thePacket
   "Having received the packet, send it on. This is the default behavior."
   self send: thePacket.
   ^self
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Methods always return a value
• If we want to return the value returned by #send:
Node>>accept: thePacket

"Having received the packet, send it on. This is the default
behavior."

^self send: thePacket.

• Use ^ self to notify the reader that something
abnormal is arriving

MyClass>>foo

… ^ self
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Some Naming Conventions
• Shared variables begin with an upper case
letter

• Private variables begin with a lower case
letter

• For accessors, use the same name as the
instance variable accessed:

Packet>>addressee
^ addressee

Packet>>addressee: aSymbol
addressee := aSymbol
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Some Naming Conventions
• Use imperative verbs for methods performing
an action like #openOn:, #close, #sleep

• For predicate methods (returning a boolean)
prefix the method with is or has

      isNil, isAddressedTo:, isSentBy:
• For converting methods prefix the method
with as

       asString
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Object Instantiation

• Objects can be created by:
– Direct Instance creation:

(basic)new/new:
– Messages to instances that create other objects
– Class specific instantiation messages
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Instance Creation
• aClass new/basicNew returns a newly and UNINITIALIZED

instance
OrderedCollection new -> OrderedCollection ()
Packet new -> aPacket

• Instance variable values = nil
• Messages to Instances that create Objects

1 to: 6             (an interval)
1@2                          (a point)
(0@0) extent: (100@100)        (a rectangle)
#lulu asString                 (a string)
1 printString (a string)
3 asFloat                      (a float)
#(23 2 3 4) asSortedCollection (a sortedCollection)
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Opening the Box
1 to: 6 -> an Interval
Number>>to: stop
   "Answer an Interval from the receiver up to the argument, stop,

with each next element computed by incrementing the previous
one by 1."
^Interval from: self to: stop by: 1

1 printString -> aString
Object>>printString
   "Answer a String whose characters are a description of the

receiver."
| aStream |
aStream := WriteStream on: (String new: 16).
self printOn: aStream.
^aStream contents
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Instance Creation
1@2 -> aPoint

Number>>@ y
   "Answer a new Point whose x value is the receiver

and whose y value is the argument."
<primitive: 18>
^Point x: self y: y
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Class-specific Instantiation Messages
• Array with: 1 with: 'lulu'
• OrderedCollection with: 1 with:  2 with:  3
• Rectangle fromUser -> 179@95 corner: 409@219
• Browser browseAllImplementorsOf: #at:put:
• Packet send: ‘Hello mac’ to: #mac
• Workstation withName: #mac
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New and basicNew
• #new:/basicNew: is used to specify the size of the

created instance

    Array new: 4 -> #(nil nil nil nil)

• #new/#new: can be specialized to define customized
creation

• #basicNew/#basicNew: should never be overridden
• #new/basicNew and new:/basicNew: are class

methods


