
Stéphane Ducasse 6.1

Essential Concepts

• Why OO?
• What is OO?
• What are the benefits?
• What are the KEY concepts?
• Basis for all the lectures

Stéphane Ducasse 6.2

Object-Orientation

• Is a paradigm not a technology
• Reflects, simulates the real world
• Thinks in terms of organization
• Tries to

– Handle complexity
– Enhance reusability
– Minimize maintenance cost

Stéphane Ducasse 6.3

Evolution

• Procedures
• Structured Programming
• Fourth Generation Languages
• Object-Oriented Programming
• ???

Stéphane Ducasse 6.4

Traditional ViewPoint

• Focuses upon procedures
• Functionality is vested in procedures
• Data exists solely to be operated upon by
procedures

• Procedures know about the structure of data
• Requires large number of procedures and
procedure names

Stéphane Ducasse 6.5

Data and Procedures

Stéphane Ducasse 6.6

What is OOP?

• An application is a collection of interacting
entities (objects)

• Objects are characterised by behaviour and
state

• Inter-object behaviour needs to be
coordinated

• Inter-object communication is the key to
coordination

Stéphane Ducasse 6.7

Object-Oriented Viewpoint

• An application is a set of objects interacting
by sending messages

• The functionality of an object is described by
its methods, it’s data is stored in private
variables

• An object’s functionality can be invoked by
sending a message

• Everything is an object

Stéphane Ducasse 6.8

Data/Messages/Methods

Data

Messages

Methods

Stéphane Ducasse 6.9

What vs How

• What: Messages
– Specify what behavior objects are to perform
– Details of how are left up to the receiver
– State information only accessed via messages

• How: Methods
– Specify how operation is to be performed
– Must have access to (contain or be passed) data
– Need detailed knowledge of data
– Can manipulate data directly

Data
Methods

Messages

Stéphane Ducasse 6.10

Message
• Sent to receiver object: receiver-object message
• A message may include parameters necessary for
performing the action

• In Smalltalk, a message-send always returns a
result (an object)

• Only way to communicate with an object and have
it perform actions

pt h w

aRectangle

aClient
…
aRectangle area
…

area

Stéphane Ducasse 6.11

Method
• Defines how to respond to a message
• Selected via method lookup technique
• Has name that is the same as message name
• Is a sequence of executable statements
• Returns an object as its result of execution

pt h w

area

aRectangle

area
 ^ h * w

aClient
…
aRectangle area
…

area

Stéphane Ducasse 6.12

Object Encapsulation
• Technique for

– Creating objects with encapsulated
state/behaviour

– Hiding implementation details
– Protecting the state information of objects
– Communicating/accessing via a uniform interface

• Puts objects in control
• Facilitates modularity, code reuse and
maintenance
External perspective vs. Internal perspective
What vs. How
Message vs. Method

Stéphane Ducasse 6.13

Encapsulation at Work

pt h w

area
area

aRectangle

area
 ^ h * w

aClient
…
aRectangle area
…

area
area

aRectangle

area
 d := (pt2-pt1).
 ^ d x * d y

aClient
…
aRectangle area
…

pt1 pt2

Stéphane Ducasse 6.14

Objects

• Unique identity
• Private state
• Shared behavior among other similar objects

Stéphane Ducasse 6.15

Class: Factory of Objects
• Reuse behavior
=> Factor into class

• Class: “Factory” object for creating new
objects of the same kind

• Template for objects that share common
characteristics

generates

Stéphane Ducasse 6.16

Class: Mold of Objects

• **Describe** state but not value of all the
instances of the class

– Position, width and height for rectangles
• **Define** behavior of all instances of the
class

area
^ width * height

Rectangle
position
width
height
area
translatedBy: aPoint

Stéphane Ducasse 6.17

Instances

• A particular occurrence of an object defined
by a class

• Each instance has its own value
for the instance variables
• All instances of a class share
the same methods

Rectangle
position
width
height
area
translatedBy: aPoint

400@10
100
20

300@20
10
140

 instance of

Stéphane Ducasse 6.18

How to Share Specification?

• Do not want to rewrite everything!
• Often times want small changes
• Class hierarchies for sharing of definitions
• Each class defines or refines the definition of
its ancestors

• => inheritance

Stéphane Ducasse 6.19

Example

GraphicalObject

Turtle

ColoredTurtle

Window

ScheduledWindow

Stéphane Ducasse 6.20

Inheritance

• New classes
– Can add state and behavior
– Can specialize ancestor behavior
– Can use ancestor’s behavior and state
– Can hide ancestor’s behavior

• Direct ancestor = superclass
• Direct descendant = subclass

Stéphane Ducasse 6.21

Comparable Quantity Hierarchy

Stéphane Ducasse 6.22

Polymorphism

• Same message can be sent to different
objects

• Different receivers react differently
(different methods)

– aWindow open
– aScheduledWindow open
– aColoredWindow open

– aRectangle area
– aCircle area

Stéphane Ducasse 6.23

Late binding: “Let’s the Receiver decides”
• Mapping of messages to methods deferred
until run-time (dynamic binding)

• Allows for rapid incremental development
without the need to recompile (in Smalltalk)

• Most traditionl languages do this at compile
time (static binding)

Stéphane Ducasse 6.24

Procedural Solution for a List of
Graphical Objects

tArea
element = Circle

then tArea := tArea + element.circleArea.
element = Rectangle

then tArea := tArea + element.rectangleArea
…

Intersect, color, rotate translate….

Stéphane Ducasse 6.25

In Java for example
public static long sumShapes(Shape shapes[]) {
long sum = 0;
for (int i=0; i<shapes.length; i++) {
switch (shapes[i].kind()) {
// a class constant
case Shape.CIRCLE:

sum += shapes[i].circleArea();
break;

case Shape.RECTANGLE:
sum += shapes[i].rectangleArea();
break;
... // more cases
}

}
return sum;

}

Stéphane Ducasse 6.26

Problems of the Procedural Solution

Adding a kind of graphical element
=> Change all the methods area, intersect,
rotate, translate…

=> Always have to check what is the data I
manipulate

Stéphane Ducasse 6.27

Object-Oriented Solution

Circle>>area
^ Float pi * r * r

Rectangle>>area
^ width * height

XXX>>area
 elements do:

[:each | tArea := tArea + each area]

Stéphane Ducasse 6.28

Advantage

• Adding a new graphical object does not
require to change the list operations

• I do not have know the kind of objects I’m
manipulating as soon as they all share a
common interface

Stéphane Ducasse 6.29

Recap

• OOP see the world as interacting objects

• Objects
– have their own state
– Share the behavior among similar objects

• Classes: Factory of objects
– Define behavior of objects
– Describe the structure of objects
– Share specification via hierarchies

Stéphane Ducasse 6.30

Recap

• OOP is based on
– Encapsulating data and procedures
– Inheritance
– Polymorphism
– Late Binding

• OOP promotes
– Modularity
– Reuse

