Tactical patterns for

the real world:

Optimization patterns

terns for efficiently implementing and managing

domain models. The first article presented a family of
instantiation patterns—patterns that aid in creating or
initializing objects.

The second article presented a family of patterns for
dealing with validation issues. Safeguard showed where to
put complex validation logic; and how to prevent invalid
domain objects from being used. Deflector showed how to
prevent attributes of certain classes from ever taking on
illegal values. And Validater showed how to provide default
validation of domain attribute values, while allowing end
users to modify default validation logic safely. The second
article also presented a family of patterns for dealing with
informational issues. Verdict showed how to manage the
results of a complex and expensive validation across a
series of domain objects so that their status or validity
may be queried at a later time. And Ticker Tape showed
how to collect status information from a lengthy domain
operation involving thousands of objects, none of which
have visibility to the user interface.

This final article presents a family of patterns for deal-
ing with optimization issues—handling domain models
that must perform well while incorporating extra levels of
indirection in order to be persistent or transient. So far,
the patterns presented have been language-neutral.
Although the following two optimization patterns require
a specific Smalltalk dialect to implement as described, the
principles they embody are generic.

THIS 1s THE final article in a three-part series on pat-

OPTIMIZATION PATTERNS

Avatar (Soft Schema Evolution)

Problem: How do you efficiently implement a persistent
object that must be able to add attributes without causing
a file shape change, yet must be very fast to access?

Motivation: (Background: The Visual Smalltalk ObjectFiler
isable to save and load collections that contain only prim-
itive objects like strings and numbers without requiring a
file shape change as the collections change in size. Thus by

Darrow Kirkpatrick

implementing a property dictionary inside a higher-level
domain object you can add simple state to the domain
object after it is designed without having to provide code
for schema evolution. Unfortunately, because access to a
dictionary is via hashed lookup, the access speed for these
additional properties is several times slower than for
attributes kept in instance variables.)

You are designing an object that holds various calcula-
tion parameters that must be accessed efficiently inside
tight loops, and must be stored persistently within each
project. It is likely that this object will add parameters over
time as additional calculation constants are made avail-
able for user editing, yet you do not wish to force a file
schema change each time a parameter is added. To solve
this problem you create two classes with the same inter-
face: one optimized for persistence and one optimized for
access, and you design a mechanism to automatically con-
vert between them as required. Avatar is the transient
incarnation of a faster memory form of a flexible persis-
tent object.

Applicability: Use this pattern when you need to imple-
ment a simple, persistent object with the following char-
acteristics: it needs to be able to add and hold properties
without explicitly mutating shape, yet access to the prop-
erties must be extremely fast, not paying the overhead of
generalized property dictionary access.

Though the implementation of this pattern presented
here is Smalltalk-specific, the general principle of mutat-
ing between a flexible persistent representation and a
fast memory representation of an object should be
applicable in any language that provides object persis-
tence mechanisms.

Solution: Implement a pair of classes with the same inter-
face. One uses a property dictionary to store attributes,
the other uses instance variables. The property dictionary
object is persistent and has an activation method that
mutates it into the instance variable object when it is read
from disk. The instance variable object is always used for
the in-memory representation of the object. It has a sur-

18 http://www.sigs.com

The Smalltalk Report



rogate creation method that answers the property dictio-
nary version of itself for save operations.

Implementation: The Visual Smalltalk ObjectFiler adds two
important methods to the Object class: fileInActivate: and
fileOutSurrogate:, as hooks for transforming an object at
load and dump time, respectively. To implement the Avatar
pattern, the property dictionary object’s filelnActivate:
method instantiates the instance variable object; the
instance variable object’s fileOutSurrogate: method instan-
tiates the property dictionary object. As new attributes are
added to the object over time, lazy initialization in access-
ing methods allows new code to work for older files con-
taining objects that lack those attributes. Note that it may
be possible to share the interface of these two classes using
inheritance: generally the instance variable class would
subclass the property dictionary class—using its interface
but notitsdictionary.

Consequences: Application of this pattern results in two
class implementations that must be maintained in paral-
lel. This is only justified when profiling indicates a perfor-
mance-critical situation.

Related Patterns: This pattern is related to Bridge® in that
it provides multiple implementations for the same inter-
face. However, where Bridge provides parallel interface
and implementation hierarchies that can vary indepen-
dently, Avatar simply provides two subclasses whose
instances are swapped back and forth.

SPEEDWAY (FAST LIBRARY INTERFACE)
Problem: How do you minimize the cost of referencing a
class within a demand-loaded library component?

Motivation: You maintain a library of mathematical class-
es for performing numerical methods. Because memory
is precious and this library is needed only during calcula-
tions it is referenced indirectly and loaded on demand at
the first reference to a mathematical class. The indirect
reference consists of a symbolic class reference via the
Smalltalk dictionary, plus a search through a collection of
library interfaces to find the library containing the class.
This indirection is relatively slow compared to numerical-
ly intensive code, especially when it appears inside itera-
tive calculations. To optimize the reference you encapsu-
late and cache it inside an object that provides a speedy
gateway to the library.

Applicability: Use this pattern whenever you indirectly
reference a component from within performance-critical
code, and the indirection is prohibitively expensive.

Solution: Write a classto act as a fast gateway to the library.
The class implements one instance variable for each pub-
lic class in the library. In performance-critical code,
instead of embedding indirect library references, send a
message to the Speedway object. The corresponding

Figure 2. Class hierarchy of math library speedway and client.

method in the Speedway initializes its appropriate instance
variable to pointto the actual class, firsttriggering alibrary
load if necessary. Thus in future references the indirection
previously in the code is optimized to a single message
send which requires a single lazy initialization test.

Implementation: The Speedway is typically a Singleton
object managed by a parent class of the domain model, so
it can easily be accessed by any domain object. When
preparing a runtime application you need to flush the
cached library references to avoid statically binding the
library component to the image.

Rather than lazy initializing a single variable at the first
library reference it may be desirable to populate the entire
Speedway. This may provide aslight performance enhance-
ment and allow consolidating some initialization code.

Consequences: This pattern requires maintaining an
additional class. Since the library indirection described
here is not slow relative to most code, this technique is
justified for performance reasons only in critical code.
However Speedway has another benefit—it objectifies and
documents the public interface to a library subsystem, as
far as that interface is limited to symbolic class references.

Related Patterns: Speedway is similar to Facade in that it
provides a public interface to a subsystem. But the intent
is different: Speedway provides an optimization whereas
Facade usually provides some additional thin layer of
behavior to make high-level use of the subsystem easier.
Note that it may be useful to implement a Facade that

incorporates Speedway’s caching behavior.
Another approach to solving the library interface prob-
continued on page 34

June 1996

http://www.sigs.com 19



OPTIMIZATION PATTERNS continued from page 19

lem is to implement class Proxy objects. When a class Proxy
is referenced it loads the necessary library and then be-
comes the real class object. This approach requires a more
sophisticated and intrusive implementation, butresults in
complete transparency for clients who use library classes.

CONCLUSION
This series documented families of implementation pat-
terns used by our development group for creating domain
models in engineering applications. In presenting a partic-
ular “handbook” of tactical patterns for a specific domain,
these articles are examples of a management or docu-
mentation pattern. The application of this higher-level
management pattern results in a pattern language—a con-
cise narrative of the principles pervading a body of code.
Pattern languages are useful at different levels of ab-
straction in different domains by different teams.
Through pattern languages Alexander, Beck, Gamma,
Helm, Johnson, Vlissides, and others have given us a pow-
erful tool for communicating the craft of software engi-
neering to each other. | hope these articles will encourage
other engineers to discover and publish handbooks of
domain-specific patterns that have helped them to deal
with the demands of creating real-world software.

Reference
1. Gamma, et al. Design Patterns, Addison-Wesley, Reading, MA,
1994.

The Smalltalk Report



