
Controlling image size when
using GemStone

John Bentley
I   applications, controlling the image
size is an important goal. Larger images require more
memory for execution, which can degrade perfor-

mance. When using an object-oriented database (ODB),
controlling the image size can be challenging. This chal-
lenge comes from the manner in which objects are stored
and retrieved in an ODB.

One of the main advantages cited for using an ODB is
the ODB’s capability to preserve the object relationship
web. Each object is stored with its relationship web intact.
When an object is retrieved from the ODB, the related
objects are also retrieved without having to manually
reconstruct the relationship web (see Fig. 1).

In contrast, in a relational database paradigm when an
object needs to be retrieved the developer must recon-
struct the object being retrieved from a table. Then, the
developer must also find and reconstruct the related
objects, and finally, re-establish the relationship web. So,
when considering the cost of manually rebuilding the
object web, it is easy to see that using an object-oriented
database can save a great deal of effort.

When retrieving an object from an ODB, related
objects are retrieved automatically. The application devel-
oper no longer has to know which related objects are
needed. This also means that the application developer

Smalltalk ODB

Object
being
retrieved

Figure 1. When using an OODb, related objects are automatically
retrieved.
12 http://www
does not necessarily know how many objects are being
retrieved. This could be a problem. For example, if the
application’s equivalent of the Smalltalk dictionary was
retrieved, then all objects in the database would be
copied into the image. It would be possible to retrieve
most, if not all, of the objects in the database. This can be
a real problem as the database usually holds more objects
than an individual Smalltalk image can handle.

To prevent overloading the image with objects it is
important to understand the mechanisms provided for
the retrieval of related objects. While preventing the
extreme case is vital, it is not the only reason. Another rea-
son to control the retrieval of related objects is to keep the
image size minimal. It is possible to create an application
that does not retrieve any related objects until they are
accessed. This set up would keep the image size small but
could also make the application’s performance bound to
database access. It is important to retrieve enough related
objects to perform the task at hand. The control mecha-
nisms for retrieval gives the application developer the
ability to balance image size versus database access.

Each ODB vendor provides different mechanisms for
controlling object retrieval. For this reason, it is easiest to
discuss the control mechanisms in the context of a partic-
ular object-oriented database implementation. In this
case, the database used as an example is GemStone, from
GemStone Systems, Inc. The Smalltalk listings are in ref-
erence to GemStone 4.0 and VisualWorks 2.0.

All listings refer to a typical employee payroll system.
The payroll systems’ object model is shown in Figure 2.
The application calculates employees’ salaries and
addresses envelopes for distribution. The application also
provides estimates at the company level for weekly and
yearly payroll. The purpose of this example is to illustrate
concepts and is not meant to be representative of typical
ODB applications.

REPLICATION CONTROL
When an object is retrieved from GemStone, the object is
“replicated” in the Smalltalk image. The replicated object,
referred to as a replicate, is a copy of the GemStone object
with a “link” to its database counterpart. The replicate
The Smalltalk Report.sigs.com

maintains the link to its database counterpart so that
updates may occur between the database and the image.
In GemStone, this controlling of the retrieval of related
objects is referred to as replication control.

The GemStone Smalltalk Interface (GSI) provides two
techniques to control replication. One of these tech-
niques is “replication tuning.” Replication tuning allows
the developer to control how objects and their relations
are replicated in the image. The other technique is avoid-
ing replication. In most cases, objects are replicated into
a Smalltalk image to perform behavior. GemStone is an
active database, allowing behavior to be defined and
executed in the database. The behavior is defined using
the GemStone Smalltalk dialect which is called Smalltalk
DB. Using behavior defined in Smalltalk DB, database
objects can respond to messages without being replicat-
ed into the client image thus eliminating the need for
replication.

REPLICATION TUNING
There are three common approaches to tune replication
using GemStone. The first approach is to change the
GemStone to Smalltalk-replication level. This defines the
level of relationship replication for the image. The second
approach is class mapping. This provides a variety of ways
to control how GemStone and Smalltalk instance vari-
ables relate. The final approach is to tune replication by
changing the “no stub level.” This controls relation repli-
cation levels on database updates.

When an object is initially retrieved from the database,
it is represented by a proxy. A proxy is merely a Smalltalk
object that references a database object. To replicate the
object in Smalltalk, the message #asLocalObject is sent to
the proxy. The result is a Smalltalk duplicate of the data-
base object that maintains a reference to the database
object. Listing 1 shows how the global MyCompany would
be retrieved and replicated.

When the proxy replicates itself, it checks to see how
many levels of relationships need to be replicated. This is
known as the GemStone to Smalltalk replication level. If
the level is two, the proxy replicates itself and the objects

Salary

rate

period

payForHours:

Employee

name

address

salary

payForHours:

addressLabel

Address

street

city

state

zipCode

addressLabel

Company

employees

weekPayroll

yearPayroll

employees

Figure 2. The payroll tracking system’s object model.
June 1996 http://www
referenced by the object’s instance variables. If the level is
three, the objects referenced by the instance variables of
the objects referenced by the primary object’s instance
variables are replicated as well. If the level is zero, all relat-
ed objects are replicated. Any related objects not replicat-
ed are represented by stubs. A stub is a stand-in object
that replicates itself when sent a message.

The GemStone to Smalltalk replication level is defined
in an instance method in the GSSession class. The
GSSession class defines behavior associated with a data-
base session. The replication level is defined in the
#defaultGSToSTLevel method. GSSession sets the replication
level for the entire application and sets the default repli-
cation level for the application.

Defining the replication level in a method provides
flexibility. For example, in one application, it might be
appropriate for #defaultGSToSTLevel to unconditionally
answer three. In another application, it might be appro-
priate to provide a different level depending on the plat-
form being used. The #defaultGSToSTLevel could be
defined as is shown in Listing 2.

In addition, there are special cases where a more spe-

| proxy replicate |
“Retrieve the GemStone global MyCompany.”
proxy := GSI currentSession at: #MyCompany.
“proxy references the GemStone global MyCompany.”

“Replicate MyCompany.”
replicate := proxy asLocalObject.
“replicate is a copy of the GemStone global
MyCompany.
It maintains a link to its GemStone counterpart.”

Listing 1. Retrieving and replicating.

“The following methods allow the default replication
level to be varied on a platform basis.”

“Methods for GSSession.”

defaultGSToSTLevel
“Answer the appropriate level for the current
platform.”

^self platformLevels at: CurrentPlatform

platformLevels
“Answer the platform level dictionary. If unset,
initialize.”

(platform is Nil)
ifTrue: [(platform := (Dictionary new))

add: #windows->3;
add: #macintosh->2;
add: #unix->5.

].
^platform

Listing 2. Platform-dependent replication level.
13.sigs.com

CONTROLLING IMAGE SIZE
cific replication level is required. In these cases,
#asLocalObjectToLevel: is used instead of #asLocalObject.
The #asLocalObjectToLevel: is sent to a proxy to replicate
the object to the level specified as the argument.

In Listing 1, MyCompany was replicated using the
default level. If the default replication level was three then
MyCompany, its employees collection and all contained
employees would be replicated. However, if all of the con-
tained employees are not needed, it might be better to
only replicated two levels, as is shown in Listing 3. With
the replication level set to 2, each employee object would
not be replicated until accessed.

Thus far replication has been tuned at the instance
basis. Replication can also be tuned on a class basis. This is
done using the second replication tuning mechanism,
class mapping. Class mapping allows Smalltalk and
GemStone classes to have different structures. In the gen-
eral case, Smalltalk and GemStone classes will have identi-

In GemStone

Object subclass: Employee
instVarNames: #(‘name’ ‘address’ ‘salary’)
classVars: #()
poolDictionaries: #()
inDictionary: Payroll
constraints: #[]
instancesInvariant: false
isModifiable: false

In Smalltalk:

Object subclass: #Employee
instanceVariableNames: ‘name address salary’
classVariableNames: ‘
poolDictionaries: “
category: ‘Payroll’

stValues: anArray
“anArray contains four proxies for the GemStone
instance variables.
Note that only the first three, name, address, and
salary, are referenced.”

name := anArray at: 1.
address := anArray at: 2.
salary := anArray at: 3.

Listing 4. Custom mapping employee.

| proxy replicate |
proxy := GSI currentSession at: #MyCompany.

replicate := proxy asLocalObjectToLevel: 2.
“This bypasses the default level and only replicates
MyCompany and the collection. Employees are not
replicated until accessed.”

Listing 3. Replicating to a specific level.
14 http://www
cal structure. In the example application, the Employee
class has three instance variables: name, address, and
salary. Both GemStone and Smalltalk would have Employee
classes with these same three instance variables defined.

In some cases, there may be an instance variable in the
GemStone class that should not appear in the Smalltalk
class, or vice versa. For example, the GemStone Employee
class might have an instance variable called allEmployees
which references the collection of all employees in the
system. This means when a single instance of Employee is
replicated, every employee in the database would also be
replicated. To prevent allEmployees from being replicated
in the image, the Smalltalk class would not have the
allEmployees instance variable. In this case, the Smalltalk
class’s instance variables would need to be mapped such
that allEmployees was not replicated into Smalltalk.

The GSI adds methods to the class Object to handle class
mappings. The methods, #stValues and #stValues:, handle
the mapping of instance variables between Smalltalk and
GemStone. #stValues is used when an object is being stored
in GemStone. #stValues stores the instance variables intoan
array and answers that array. #stValues: is used when repli-
cating an object being retrieved from GemStone. It takesan
argument of an Array and copies this array’s values into the
instance variables. Both of these methods directly map the
instance variables to an array, such that the instance vari-
able stored at n is stored in the array at n.

Whenever a class’ instance variables are defined differ-
ently in Smalltalk and GemStone, the #stValues and
#stValues: methods must be redefined in the Smalltalk
class to properly map the instance variables. For example,
to remove allEmployees from the Smalltalk Employee class,
the #stValues: would need to map name, address, and
salary from the array, but not acknowledge allEmployees.
The Smalltalk code for this is shown in Listing 4.

The final method of replication control addresses the
case in which a replicated object is being updated to
reflect changes made in its GemStone counterpart. When
the database object is changed, the associated Smalltalk
replicate object is “stubbed.” The replicate object is then
transformed into a stub instead of being reloaded. This
“stubbing” provides a performance enhancement that
allows laissez-fare loading of updated objects.

The behavior of a stub object is to replicate itself when
accessed. The database object is replicated in its place.
When replicated, it also replicates its related objects.
Replication is still controlled using the #defaultGStoSTLevel
defined in GSSession.

There are certain circumstances in which stubs are
inappropriate. In this context, the most interesting cir-
cumstance deals with performance. If an object is
stubbed, it will be replicated using the default replication
level for the application. But, if an object was initially
replicated using a custom level, this default behavior is
undesirable. In this case, it is better to prevent the object
from being stubbed.

Stubbing is controlled by the #noStubLevel method
defined by GemStone in the class Object. The “no stub”
The Smalltalk Report.sigs.com

level defines the levels at which stubbing is not allowed. A
“no stub” level of zero, the default, indicates that the
receiver can be stubbed. A “no stub” level of one, prevents
the receiver from being stubbed. A “no stub level” of two
prevents the receiver and the objects referenced by its
instance variables from being stubbed, and so on.

In Listing 2, MyCompany was replicated to level two. This
was done because the default replication level of three
would have also replicated the employees. If MyCompany
was stubbed, then on the next access, MyCompany would
be replicated using the default replication level of three,
replicating all contained employees. To prevent this, the
#noStubLevel method is overridden in the Smalltalk
Company class to answer 2, as is shown in Listing 5.

AVOIDING REPLICATION
In general, objects are retrieved from a database to inter-
act in the client. In most cases, these objects can only
answer messages when replicated in the client image.
However, in GemStone, database objects can respond to
messages without being replicated in the image. This
removes the requirement for objects to be replicated into
the client environment when needed to perform a task.
These objects can respond according to the behavior
defined in the database.

In GemStone, behavior can be defined in two places;
the image and the database. This duality is often referred
to as the two-space model. The two-space model is pow-
erful but complex. Behavior in the image can be the same
or different than the database. If the same method needs
to exist in both the image and database, the developer
must define the method in the image’s dialect as well as in
Smalltalk DB (see Fig. 3).

The two-space model is more complex than using a
“non-active” database but does provide much greater
flexibility to the application developer. For example, a
query needs to be performed to find all the employee that
make more than $800 a week. In a non-active database,
the behavior for calculating pay would need to be in
Smalltalk. To perform the query, every employee object
would need to be replicated in the image to find those
who make more than $800. An active database provides
the ability to define salary calculation in the database.
Only those employees that made more than $800 would
need to be replicated.

Many non-active database provide the ability to per-
form queries against instance variables in the database.
To optimize the query, an instance variable called
weeksPay could be added to Employee to store the value.

“Methods for Company class”

noStubLevel
“This prevents Company and the employees collection
from being stubbed.”

^2

Listing 5. Changing Company’s “No Stub” level.
June 1996 http://www
However, in this example, if the query changed to use a
month’s pay, the database schema would need to be
changed and the current instance of Employee would need
to be migrated. In the active database, only changes to
behavior are needed.

GemStone’s Smalltalk DB is a Smalltalk dialect that has
been specialized for database functionality. Smalltalk DB
is similar to the VisualWorks, Visual Smalltalk, and IBM
Smalltalk dialects but is not syntactically equivalent to any
of these. Smalltalk DB provides the Common Language
Data Types as defined in the original Smalltalk language
specification. SmalltalkDB does not specifyany user inter-
face classes. However, Smalltalk DB does provide exten-
sions to optimize queries and handle large collections.

To access behavior defined in Smalltalk DB, messages
can be sent to a database object via its proxy. Proxies

“Sending the message to a proxy using
remotePerform.”
| proxy |
proxy := GSI currentSession at: #MyCompany.
proxy remotePeform: #yearPayroll

“Sending the message to a proxy using the gs prefix.”
| proxy |
proxy := GSI currentSession at: #MyCompany.
proxy gsyearPayroll

“Sending the message to a replicate using the gs
prefix.
Convert the result to a replicate.”
| replicate |
replicate := (GSI currentSession at: #MyCompany)
asLocalObjec
replicate as GSObject gsyearPayroll asLocalObject
“replicate asGSObject answers a proxy”

Listing 6. Sending messages via proxies.

Employee

name

address

salary

addressLabel

Company

employees

weekPayroll

yearPayroll

employees

Smalltalk GemStone

Company

employees

weekPayroll

yearPayroll

employees

Employee

name

address

salary

payForHours:

Figure 3. Behavior can be defined in both GemStone and Smalltalk.
15.sigs.com

CONTROLLING IMAGE SIZE
understand a set of messages similar to the #perform: set
of messages defined in the class Object. These messages
are #remotePerform:, #remotePerform:withArgs, #remote-
Perform:with:, #remotePeform:with:with:, etc. In addition to
the #remotePerform: series, a proxy also sends messages
prefixed with “gs” to its database object. When a message
is sent to a database object via a proxy, the resulting object
is also a proxy (see Fig. 4).

Database behavior is usually used when the receiver
needs to collaborate with several other database objects
that are not replicated in the image. Executing this behav-
ior in the database eliminates the overhead of replicating
objects when only the results are needed. In the example
application, estimated payroll for the year could be calcu-
lated in the database. By using database behavior, all of
employees for the company do not need to be replicated.
Listing 6 contains the Smalltalk code needed to accom-
plish this.

Using #remotePerform: provides access to database
behavior but at the price of dealing with proxies through-

Smalltalk GemStone

gsweekPayroll

| weekPayroll |

weekPayroll := MyCompanyProxy

gsweekPayroll.

MyCompanyProxy

MyCompany

1357.27Proxy for: 1357.27

weekPayroll

Figure 4. Messages can be sent to database objects via proxies. The
resulting object is a proxy.

Smalltalk GemStone

weekPayroll

| weekPayroll |

weekPayroll := MyCompanyFwdr

weekPayroll.

MyCompanyFwdr

MyCompany

1357.271357.27

weekPayroll

Figure 5. Messages sent to a forwarder are automatically sent to the
database object. The resulting object is a replicate.
16 http://www
out the application. While proxies are Smalltalk objects,
they are merely reference points to database objects. The
GSI provides a more seamless method for accessing data-
base behavior, namely forwarders.

Forwarders are Smalltalk objects that forward mes-
sages to their database object counterparts. When a mes-
sage is sent to a forwarder, the forwarder sends a
#remotePerform:withArgs: to the proxy for the database
object. The behavior is executed by the database object
and returns the result. By default, the result of a message
sent to a forwarder is a replicate. Forwarders allow the
application to access database behavior without having
to deal with intermediary objects (see Fig. 5).

In general, forwarders are used to represent the princi-
pal access points of the system. These access points con-
tain the major collections that are used to find specific
instances of objects. First, the search message is forward-
ed into the database. Then, only the resulting set of
objects are replicated, removing a lot of overhead.

Forwarders can be used to virtually eliminate the use of
replicates. This can be very useful when dealing with under-
powered client machines. By default, messages sent to a for-
warder result in a replicate. By appending messages with
“fw”, the forwarder will answer with forwarders instead of
replicates. In an application that only uses forwarders, the
#doesNotUnderstand: message on the forwarder class could
be modified to return forwarders by default.

In the example application, replication tuning was used
to minimize the number of replicated objects related to
MyCompany. Payroll messages are being sent to the data-
base objectsto avoid replication. Since MyCompany is only a
container for employee objects, it is best to reference
MyCompany with a forwarder. This prevents all of
MyCompany’s employees from being replicated. Payroll
messages can be sent to MyCompany without regard to
proxy conversions. Some samplecode is shown is Listing7.

When using forwarders, it is important to remember
there is a trade off. A forwarder saves space in the image
by avoiding replication. The messages often have to trav-

Smalltalk GemStone

fwweekPayroll

| weekPayroll |

weekPayroll := MyCompanyFwdr

fwweekPayroll.

MyCompanyFwdr

MyCompany

1357.27
Forwarder for:

1357.27

weekPayroll

Figure 6. Messages sent to forwarders can be prefixed with a “fw” which
causes the resulting object to be a forwarder.
The Smalltalk Report.sigs.com

el across the network to be answered. Network latency
could cost more than replicating the object. Also, there is
the concern of overloading the server with user requests.
Essentially, forwarders are not a “silver bullet.” As with
anything else in software development, it takes trial and
error along with educated guesses to determine the opti-
mal solution for each implementation.

CONCLUSIONS
In general, controlling the size of the image is an impor-
tant goal with respect to system performance. This is
especially true when using on object-oriented database
such as GemStone. Object-oriented databases provide

“Get the estimate for the weekly payroll.”
| forwarder |
forwarder := (GSI currentSessiona at: #MyCompany) as
Forwarder.
forwarder weeklyPayroll

“Find all employees that live in Raleigh.
Keep the resulting collection as a forwarder.”
| forwarder |
forwarder := (GSI currentSessiona at: #MyCompany)
asForwarder.
forwarder employees fwselect: [:emp| emp address
city = “Raleigh’

Listing 7. Forwarder examples.
June 1996
mechanisms for controlling the flow of objects between
database and image. In GemStone, image size control is
provided by the ability to tune and avoid replication.

While limiting replication helps control image size, it is
also important to consider database access time. Objects
can be retrieved without replicating any related objects.
This would prevent image growth but each subsequent
access would require a database access, negatively
impacting the user’s performance. Replication control
allows you to balance controlling image size while provid-
ing object caching for performance.

In summary, when building a Smalltalk application
using GemStone, consider carefully the two-space model.
When deciding where to execute behavior, look to see
where the objects reside. If most of the objects needed to
perform the operation are in the database, then define that
behavior in the database. This minimizes the need for
replication. If the object is needed for heavy interaction in
client, replicate the object. This minimizes network latency.

Of course, there are no simple answers. Every applica-
tion has a different object model and different hardware
constraints. Plan to spend time trying out a variety of
replication schemes as a part of performance optimiza-
tion. The “right” solution is the one that works for you.

John Bentley is Member, Technical Staff at JumpStart Systems,
Inc., Raleigh, NC. He can be reached via e-mail at jbentley@jmp-
start.com or by phone at 919.832.0490.

`

`

