
A strategy for using
instance variables

Bobby Woolf
I    a strategy for using instance
variables that you might find helpful. This strategy pro-
vides guidance for several common programming

tasks, such as properly initializing instance variables and
providing accessors to use them. It shows how to imple-
ment equality methods and helps guide the initial deci-
sions in making an object persistent. Finally, it explains
why the instance variables in various application layers
tend to behave differently.

Although this strategy probably isn’t perfect, it is one
that I find useful. The strategy doesn’t consist of hard and
fast rules you should always obey, just suggestions you
should consider and trends you can look for. I can’t guar-
antee that following these guidelines will make you a bet-
ter programmer, but they should help.

TYPES OF INSTANCE VARIABLES
I’ve noticed that not all instance variables are created
equal. Some seem to be more important than others.
When using instances of a particular class, I notice that
I’m constantly inspecting certain instance variables to
make sure their values look reasonable, yet I consistent-
ly ignore other instance variables. So I’ve been trying to
figure out how to distinguish the important ones from
the unimportant ones.

In looking at how I use instance variables, I’ve found
that there are three types, which I call identity, status,
and cache. When looking at a new class, I try to distin-
guish these types to help figure out how the class works.
When one of my own classes doesn’t work well, I look at
how I’m using these types; often I find inconsistencies;
when I clean those up, the class works better. As I help
other people develop their classes, I look for these types.
If possible, I encourage the developers to identify each
instance variable’s type and use it “correctly.”

I describe the three types in the following subsections.

Identity variables
Identity variables are how you distinguish two instances
June 1996 http://www
of a class. If both objects have the same identity values,
they represent the same entity. Once an identity value is
set, it usually doesn’t change. After all, if you recognize an
object because it has a certain identifier, and that identi-
fier changes, how will you recognize it again next time? An
object’s identity values must be set for the objects’ state to
be valid. Also, there are usually no good default values for
identity variables. Multiple objects with the same default
values would be indistinguishable. Examples of typical
identity variables include uniqueID, name, and a tree
node’s parent.

Status variables
When developers talk about instance variables—the vari-
ables that maintain an object’s state and are accessed
through getter and setter methods—they’re usually talking
about what I call “status variables.” Status variables main-
tain an object’s internal state and its relationships to other
objects. These relationships may be aggregate or asso-
ciative. Whereas identity values don’t change, status val-
ues change constantly to reflect the object’s changing
state. Like identity variables, status variables must be set
in order for the object’s state to be valid; otherwise its
internal state is undefined and inconsistent. If a status
value is lost (set to an invalid value such as nil), the
object’s state cannot be recovered. Finally, status variables
have suitable default values. (If nothing else, nil can be
used as the default value, but that’s often not a very good
one. See my previous discussion on the Null Object pat-
tern.1) Taken together, these default values describe the
object’s initial state. Examples of status variables include
address, employer, and a tree node’s children, as well as
the various settings represented on a GUI using check
boxes, radio buttons, etc.

Cache variables
Cache variables cache the results of expensive calcula-
tions. Their values are derived from the values of iden-
tity and status variables. When those values change, the
7.sigs.com

INSTANCE VARIABLES
cache values must be recalculated. So cache values
change as frequently as the values they are based on
change. Cache values are optional; the object’s state is
still valid without them. If a cache value is lost, it can
easily be recalculated. A cache variable’s default value is
usually uncalculated, a flag indicating that the value
hasn’t been calculated yet. The most common flag for
uncalculated is nil, but there can be other such flags.
For an example of a cache variable in VisualWorks, see
CompositePart>>preferredBounds. A composite calculates
its preferred bounds by merging those of its compo-
nents; it caches the result for efficiency.

RAMIFICATIONS
These definitions are comforting, but they alone don’t
make your code any better. Yet you can improve your
code by recognizing these types and writing your code
accordingly.

Initialization
There are three approaches to initialize a variable:
1. Let a collaborator set its value explicitly.
2. Set its value to a default constant.
3. Set its value to the result of a calculation.

Each of these approaches is used to initialize a differ-
ent type of instance variable:
1. Identity initialization—Initializes the identity vari-

ables.
2. Creation initialization—Initializes the status variables.
3. Lazy initialization—Initializes the cache variables.
Identity variables are initialized by the collaborator which
creates the object. The collaborator should accomplish
this via an instance creation method on the class side.
Two examples of instance creation methods in Vis-
ualWorks—besides the standard ones like new, basicNew,
and new:—are Point class>>x:y: and Dependent Partclass>>
model:. An instance creation method on the class side
should be implemented via a corresponding identity ini-
tialization method on the instance side. For example,
Point class>>x:y: uses the identity initialization method
Point>>setX:setY: to create the new instance:

Point class>>x: xInteger y: yInteger
^self basicNew setX: xInteger setY: yInteger

Point>>setX: xPoint setY: yPoint
x := xPoint.
y := yPoint

The instance creation methods in Circle and Interval are
implemented the same way. I prefer to name this identity
initialization method init..., so the name I would have
used for Point>>setX:setY: would have been initX:y:. I put
these methods in the “initialize-release” protocol.

Status variables should be initialized to their default
values when the new instance is created. The standard
name for the method that performs creation initializa-
tion is “initialize”. VisualWorks has tons of examples of
8 http://www.
this, such as SortedCollection>>initialize. Another ex-
ample is OrderedCollection>>setIndices; it isn’t called “ini-
tialize” but it should be because it serves the same
purpose.

Cache variables do not need to be initialized until
they are used. In fact, initializing them is usually expen-
sive and should be avoided until you know the values are
needed. The easiest way to do this is to build lazy initial-
ization into their accessors. VisualWorks doesn’t use this
technique much, but two examples are Composite-
Part>>preferredBounds and SliderView>>marker. You might
implement Circle with radius as an identity variable and
diameter and area as cache variables:

Circle>>radius
^radius

Circle>>diameter
diameter isNil ifTrue: [self computeProperties].
^diameter

Circle>>area
area isNil ifTrue: [self computeProperties].
^area

Circle>>computeProperties
| r |
diameter := radius * 2.
r := self radius asLimitedPrecisionReal.
area := r class pi * r * r

Developers often use lazy initialization with variables that
are not caches, but I avoid this. Although caches are ex-
pensive to initialize, other variables usually aren’t, so I see
no compelling advantage in using lazy initialization on
those other variables.

Often status variables are initialized in terms of iden-
tity variables, which means that an identity initializa-
tion method (in the form of initA:b:...z:) has to be run
before the creation initialization method. Here’s a hypo-
thetical example of an instance creation method that
will do this:

Example class>>x: newX y: newY
^(self basicNew initX: newX y: newY) initialize

HelpBrowser class>>on: is implemented this way because
HelpBrowser>>initialize ends-up using the value of on:’s
parameter.

Accessing
Developers often automatically create getter and setter
methods for all of their instance variables and put them in
a public protocol like “accessing.” I prefer to be a little
more selective and only create accessors for certain types
of instance variables.

Identity variables need getters but no setters. The getters
may be public or private. Setters are usually not necessary
because the identity variables’ values typically don’t
change. The only “setter” that is required is the identity
initialization method (initA:b:...z:). Any setters you do
The Smalltalk Reportsigs.com

June 1996
I see no compelling
advantage in using
lazy initialization.
provide should definitely be private. Status variables use
getters and setters in the conventional manner. These
methods can be public or private.

Cachevariables havegetters butnosetters.Thegetters,
which can be public or private, contain lazy initialization. I
prefer to implement the lazy initialization via a compute...
method, as shown earlier in
Circle>>computeProperties. If the cal-
culations for one cache variable cal-
culate others in the process, group the
initialization for
all of those variables together in one
compute... method. Don’t implement
setters; they could be used to set the
caches to values that are inconsistent
with the object’s
state. Instead of setters, I implement
flush... methods
which reset the variables back to their uncalculated state
(usually nil). If one change invalidates a number of caches,
I flush them all in one method.

For example, let’s say that the Circle described earlier
caches both diameter and area and that radius can
change. Some more of the code would be

Circle>>radius: newRadius
radius := newRadius.
self flushProperties

Circle>>flushProperties
diameter := nil.
area := nil

The compute... and flush... methods are private ones. The
cache getter methods with the lazy initialization send the
compute... methods (seeCircle>>diameter).The setter meth-
ods for the status (and identity) variables send the flush...
methods (like Circle>>radius:). A particular setter does not
need to flush all
of the object’s cache variables, only the ones that were cal-
culated from it.

Equality versus identity
In my previous article, I talked about the difference
between object identity and object equality. Object iden-
tity is very clear cut. If two variables contain identical
objects, they are double-equal, which means that they
both point to the same address in memory. Thus the two
variables actually contain the same object.

Object equality is not so straightforward. If two vari-
ables’ values are equal but not identical, they contain sep-
arate objects that are equivalent. The question is: What
makes objects equivalent? In theory, they represent the
same value. In practice, for Smalltalk, it means that a Set
considers them to be duplicates.

I contendthat two objectsare duplicates if their identity
variables are equal; their status and cache values are ir-
relevant. Because identity values rarely/never change, this
meansthattwoobjectsthataresometimesequalarealways
http://www
equal. Changes in their status don’t affect their equal-
ness. Thus if one object is a duplicate of another, it will be
so through its entire lifetime, which is how it should be.

Just as implementors of equal (=) use identity variables,
so do implementors of hash. If two objects are equal, their
hash values need to be the same. So the same variables

which are used for determining
equality are also used for calculating
hash values.

Persistence
When an object needs to store itself
persistently, it shouldn’t necessarily
store all of its instance variable val-
ues the same way. Some instance
variable types are persistent, others
are not.

When storing an objectin a relationaldatabase, its iden-
tity values belong in the database table’s key columns. Just
as identity variables should uniquely identify an object, a
row’s key column values should be unique from other rows.
Status variables that represent state have simple values
that are stored directly in table columns. Those maintain-
ing relationships to other objects become database joins.
There is generally no need to store cache values persistent-
ly. Rather than consume database space, just recalculate
them after reading the object out of the database.

The storage issues for an object database are similar to
those of a relational one. An object’s identity values serve
as its keys for retrieving it from the database. Status val-
ues are simply stored with the object. And cache values
do not need to be stored at all, although they can be for
completeness.

Database proxies also make use of instance variable
types. A proxy must contain the identity values for its real
object. That way it will be able to load the real object out of
the database. Because a proxy is supposed to be light-
weight, it shouldn’t contain status or cache variables.
Ideally, as much of the proxy’s behavior as possible will be
implemented just using the identity values. This will help
maximize the amount of work the proxy can perform and
minimize the number of real objects that need to be read
from the database.

Dictionaries, Smalltalk objects that act somewhat
like simple databases, also make use of instance variable
types. Each element is stored in a Dictionary by a key that
must be unique. That key is often an identity variable.
That variable’s value must not change while the element
is stored in the Dictionary. Thus an identity variable makes
a much better key than a status variable does.

Application layering
A Smalltalk program contains four main layers: view,
application (mediator), domain, and infrastructure.2

Most of the variables in application models and view
objects are status variables. Identity variables are concen-
trated in domain objects. Infrastructure objects tend not
to contain much state at all; they mostly point to domain
9.sigs.com

10

INSTANCE VARIABLES
Object identity is
very clear cut.

Object equality is not
so straightforward.
objects in some way (which can be an identity or status
relationship).

Exceptions
These guidelines are not rules that are engraved in stone.
Identity values can change during an object’s lifetime. It’s
sometimes helpful for an instance creation method to ini-
tialize some status variables. A proxy may want to contain
certain status values because they’re used so often. How-
ever, I try to stick to these guidelines when possible. When
I make an exception, I like to have a good reason.

Here are some interesting excep-
tions to these guidelines that I’ve
found in VisualWorks.

Set’s tally variable—Its behavior is
a cache. If its value were ever lost, it
could easily be recalculated.
However, it’s implemented as a sta-
tus variable. That is because its value
only changes by ±1 each time, a sim-
ple and well-defined transformation on the old value. For
a large Set, it is much easier to add or subtract 1 than to
flush the value and recalculate it from scratch.

Model’s dependents variable—It’s behavior is a typical
status variable. However, when storing a Model persistently,
thisvariable mustbe treated specially. Dependents are usu-
ally transient and thus are not stored when their parent is.

Point’s x and y variables—Are these identity variables or
status? Oncea Point is created, canitsx andy values change?
Generally, changing their values is a bad idea, but there are
plenty of examples where it works just fine. The same goes
for the instance variables in Rectangle, Circle, Date, etc.

OBJECTIONS
As I discuss these ideas with other developers, I hear cer-
tain objections repeatedly. Here are some of them and my
replies:

“Initialize is expensive”—Not if it’s used properly. I use
it to initialize status variables, ones which have readily
available default values. If an implementor of initialize is
expensive, it’s probably doing more than just initializa-
tion. Which leads to…

“This status variable is expensive to initialize”—Then
it’s a cache variable. Cache variables require calculation to
initialize; that’s why they’re lazy initialized. Status vari-
ables are initialized with simple default values that need
no calculation.

“This status variable is hardly ever used”—Then get it
out of that object! Every time you instantiate an instance of
that class, you’re sucking up memory for variables that
probably won’t be used. If there are a number of these vari-
ables, you’re wasting a lot of memory. Refactor the class
into two or more classesthat separate the variables that are
usually used from those that usually aren’t. By the way,
each of the pointers to these optional separate objects is a
status variable, but it can be implemented as a cache.

“Lazy initialization is more efficient”—Not for identity
and status variables. They’re only initialized once. Why
http://www
have the getters check every time to make sure they’re ini-
tialized? They already have been. Lazy initialization is fine
for cache variables because they get flushed periodically.
But for identity and status variables, you always use them,
so initialize them once and get it over with.

A WELL-DESIGNED OBJECT
Let’s take a look at how you would use these guidelines to
design a class. First of all, we assume that the class’ imple-
mentation requires a number of instance variables.

• Some of their values are computed from the values of
others. These are cache variables.
• Some are required as part of the
object’s state and have suitable
default values. These are status
variables.
• Some others are also required
but do not have good default values.
The object’s collaborators must set
these values when they create the

object. These are identity variables.
Once you’ve established these designations for your vari-
ables, follow the other guidelines to help implement the
class properly. The identity values should not change.
They should be used in implementors of equals and hash
and as database keys. The cache variables should have
lazy getters as well as flush and compute methods. The sta-
tus variables should be used to maintain the object’s cur-
rent state.

CONCLUSIONS
Here are the main points in this article:

• There are three types of instance variables: identity,
status, and cache.

• Identity values don’t change, status do, and cache are
calculated from identity and status.

• Each type is initialized differently: identity initializa-
tion from collaborators, creation initialization, and
lazy initialization.

• Identity variables are used for =, hash, and as diction-
ary and database keys.

• Status variables store an object’s state and relation-
ships to other objects.

• Cache variables require flush and compute methods.
• These are guidelines only; there are exceptions.

In my next article, I’ll talk about how to display an object
as a String. It turns out that identity variables are very
helpful for doing this.

References
1. Woolf, B. “A Hierarchy that Acts Like a Class,” The Smalltalk

Report 5(4), Jan. 1996: 4–10.
2. Brown, K. “Remembrance of things past: Layered architectures

in Smalltalk applications.” The Smalltalk Report 4(9), July–Aug.
1995: 4–7.

Bobby Woolf is a Member of Technical Staff at Knowledge Sys-
tems Corp. in Cary, NC. He mentors Smalltalk developers in the use
of VisualWorks, ENVY, and Design Patterns. Comments are wel-
come at woolf@acm.org, or at http://www.ksccary.com.

`
`

The Smalltalk Report.sigs.com

