
Smalltalk SQA:
What to test?

Jeff McKenna
4

We must build
the quality in.
A   Smalltalk more frequently to de-
velop production systems, the quality of Smalltalk-
based applications has become an important issue.

This is the first of a series of articles on Smalltalk SQA,
the goal of which is to discuss the issues of SQA in the
Smalltalk development environment. Each article will fo-
cus on a specific aspect of Smalltalk
SQA. Note that Software Quality
Assurance in Smalltalk is not a solved
problem. This series hopes to con-
tribute to the solution.

Many of the points to be made in
these articles apply to software
developed using any development
environment. However, the use of Smalltalk makes the
impact of not “taking care of business” more visible
because of the high development productivity. We need to
develop processes and tools to help us develop robust
software without sacrificing high productivity.

THE TOP QUESTION
When considering SQA, the first question we ask is this:
What do we test? The first answer is easy: The software.
This answer is insufficient. For any real project there will
be insufficient time or resources to completely test the
software. This means that we must decide how to deploy
those resources most effectively.

For applications with a GUI, the answer seems easy:
Test the interface. The need for such testing is real and the
success of GUI testing tools attest to that reality. The GUI
testing tool vendors are working to make sure that their
tools work with the dialects of Smalltalk. Many projects
are using GUI testing as their sole method of testing.

This reminds me of quality control activity in the
automotive industry in the 50s and 60s. TV ads from
that time show hordes of white-coated, quality techni-
cians poring over a car fresh off the assembly line. The
technicians assured us that they would find every defect
before it reached us.
http://www
Unfortunately, those technicians did not find enough
of the defects. The automotive industry went through a
very traumatic time over quality. The industry finally
came to the same conclusion that other industries have.
In short, it is not possible to insure sufficient quality with
only inspections at the end of the manufacturing process.

This is exactly what we are doing
when we test only by using GUI test-
ing tools.

In our experience, the GUI is the
least stable part of an application.
Typically, it is the last part finished. If
we are to have the SQA work proceed
with speed that we have come to

expect in development, we must do more work in parallel.
Basing all testing on the GUI means that little testing can
occur until near the end of a development cycle. Since the
GUI may change as well, GUI based tests will tend to be
unstable.

GUI-based testing is necessary but it is not sufficient. If
it was, software would be of much higher quality than we
experience. In addition, when the software is “headless,”
GUI-based testing is not even possible. I am not saying
here that GUI-based testing should not be done. If my
resource constraints are so severe to limit my testing tech-
nique to a single one then GUI testing would be it.

The automotive industry solved its quality problems by
utilizing a number of techniques. One common thread of
these techniques is that they maintain quality at each
stage of production. The automotive worker can stop the
assembly line if cars of “bad” quality are being produced.
Component vendors ship components of top quality, that
is, no defects. We hear the result of these changes in the
language of the advertising: “Quality is Job #1” or “Quality
is built in.”

“What to test?” is now a question that has a clearer
answer. We must test the final product and the compo-
nents that make up that product. We must build the
quality in.
.sigs.com The Smalltalk Report



SMALLTALK SQA
COMPONENTS
Before we can discuss how to build quality in, we must
first establish our definition of a component. In automo-
tive manufacturing, example components are the screw,
the bolt, the starter and the transmission. In transmis-
sion manufacturing, example components are the gear,
the switch, the screw and the bolt. Higher “level” compo-
nents contain lower level components. Different higher
level components often share the same lower level com-
ponents. Both the starter and the transmission may use
1/4 6-32 screws and bolts. We see in the automotive
industry two of the component constructs we find in our
industry: Encapsulation and Aggregation. A bill of mate-
rials illustrates the use of these constructs.

Initially most of us felt that the class was the lowest
level component in Smalltalk, the lowest level of reuse. We
now know that the class is not typically the lowest level
component. The lowest component is a combination of
classes and methods with a clear purpose and intent. An
example of multiclass capsulation into a component is
the Graphics Component of many textbooks:

Graphic
Ellipse

Circle
Rectangle

Square
Line

Taken together, these classes form a logical grouping. If
the class Graphic implements a method Graphic>>isGraphic,
we should also define Object>>isGraphic. If we do so, the
Object method is part of the Graphics Component.

The major code control systems used with Smalltalk
today acknowledge the levels of components under dif-
ferent names. Team/V calls low level components pack-
ages and higher level components clusters. ENVY does
not map directly in this way. It calls low level components
applications or subapplications depending on the reuse
strategy and the high level components configurations or
applications.

My view is that these are all components and that a sin-
gle construct is sufficient. Low-level components just do
not contain any subcomponents. ENVY could drop the
distinction between application and subapplication
while Team/V could merge cluster and packages.

The decomposition of an application into compo-
nents is not an easy task and there is no right answer.
Having too many is confusing and costly and having too
few inhibits parallel development. The criteria to be con-
sidered in defining a component are very similar to those
used in defining classes. Does the component do one
thing? Is it maintainable by one person? Is it cohesive?
Does it have a narrow interface?

SQA uses a component differently than development
uses that component. We suggest that the component is
the unit of acceptance and rejection. This moves SQA
activities into the production process. These activities
must determine the quality of each component.
6 http://www
SOFTWARE COMPONENT
We define a software component as code encapsulated
with documentation and tests. The key concept is that the
code itself is not verifiable or reusable without its docu-
mentation and its tests.

If this sounds very old, it is. As an industry we have
known this for a long time. We have not acted on that
knowledge. The question in my mind is how to build pro-
cess and structure that encourages the practice. If both
documentation and tests are an active part of the devel-
opment then the practice is encouraged. In particular,
components are reusable only when they include docu-
mentation and tests.

From the point of view of testing, the primary goal of
documenting the software component is to present the
public interface. This should include message definitions
including the returned objects, required message se-
quences and error conditions. A major SQA task is to de-
termine if the component tests cover the component
public interface. The vehicle for this is the documentation.

My experience is that the process of writing the docu-
mentation improves the code, if the developer corrects
errors, renames methods and fleshes out behavior as part
of the documentation effort.

At a minimum, component tests must exercise the com-
ponent public interface (verification). More complete test-
ing will do a number of things: (1) test to determine if all
code is executed (coverage); (2) test to determine if reach-
ing limits does not fail (stress); (3) test the error handling
(failure analysis); or (4) test the internal details (implemen-
tation). A primary SQA task is to make sure that the com-
ponent tests are sufficient to determine if the component
meets the project quality standards.

In the past, we often found the developers writing the
lowest level tests, unit tests, and leave the fleshing out of
tests to SQA, system tests. With Smalltalk that divide
should be less clear. I view the SQA tasks as work to be
done to delivery a quality software component. Who
exactly performs those tasks is not too important.

My experience is when developers write and use tests,
their code improves, exactly the same as when they write
documentation. Testing will uncover errors. The availabil-
ity of tests also makes incremental development work bet-
ter. Developers will know when their rework is complete.

The automotive worker now knows that quality is an
issue for him or her to address directly. Quality is built in.
Development ofsoftware inSmalltalk needs todothesame.

In the next article, I will take up the public/private
problem and discuss regression testing. 

Jeff McKenna is Founder and President of MCG Software, Inc. of
Wilsonville, OR. MCG Software offers testing frameworks for
Smalltalk. Jeff has been involved with software for more than 33
years and been involved with Smalltalk since 1982. Jeff was chair-
man of OOPSLA ‘94. He may be reached at mckenna@acm.org.

`

`

The Smalltalk Report.sigs.com


