
Getting Real

Jay AlmarodeMechanisms for application
partitioning
M   described the differences between
client Smalltalk systems and server Smalltalk,
and how server Smalltalk fits into the three-tier

architecture that is emerging to meet the performance
and business requirements of enterprise-wide applica-
tions. The key to balancing the processing load between
clients and server, and sharing business objects in such
architectures, is the ability to partition applications.

Application partitioning is the activity in which code
written for the client can be moved to the server (or vice
versa). When both the client and server can execute the
same Smalltalk code, this movement of objects and code
is much simpler and allows the application to be dynam-
ically tuned in the face of changing hardware and soft-
ware. Applications can be developed initially only on the
client, and then portions can be moved to the server to
share objects, enforce security policy, and gain fault toler-
ance of critical data as needed.

When the clients and server speak a different language,
this partitioning should occur earlier in the design, because
partitioning decisions are more difficult and costly to
change later. Unfortunately, performance tuning often
occurs late in the software process so, in many cases, the
decision to repartition an application must balance the
cost of reimplementing large sections of code against the
expected performance gain. Making such changes is dis-
couraged because the cost of repartitioning is higher. Also,
developers must be proficient in two different languages,
one for client development, and one for the server.

When Smalltalk is the language on both the client and
server, what mechanisms are available to partition the
application and to distribute objects and behavior be-
tween the client and server? In GemStone Smalltalk, there
are several mechanisms available so that client ap-
plications can reference and manipulate objects located
on the server. One mechanism is forwarders. A forwarder
is a client object that covers for a server object. A for-
warder does not contain any state of the server object, but
maintains enough information to communicate with the
server object when needed. When a message is sent to a
forwarder, the execution of its behavior actually takes

Using Smalltalk since 1986, Jay Almarode has built CASE tools,
interfaces to relational databases, multi-user classes, and query
subsystems. He is currently a Senior Software Engineer at
GemStone Systems Inc., and can be reached at almarode@slc.com.
18
place on the server. The forwarder knows the identity of
the server object and how to communicate with it.

Forwarders are implemented in such a way that no
special code is required to check for the presence of a for-
warder before sending it a message. Forwarders utilize
Smalltalk’s message-sending mechanism to automatical-
ly forward messages by special handling of the
doesNotUnderstand: error. The Forwarder class does not
inherit from class Object, so forwarders understand very
few messages on the client side. Most messages to a for-
warder are silently trapped by the execution thread on the
client, forwarded to the server for execution, and the
result returned to the client for continuation of its execu-
tion thread. If the message to a forwarder contains argu-
ments, those arguments are transformed automatically
into server objects if needed. This is implemented in such
a way so that application code does not have to be written
any differently, whether the receiver of a message is a for-
warder or some other client object.

There are several ways a programmer can get a for-
warder to a server object. One way is to send the message
beForwarder to a replicate (discussed later). For example, a
newly created client object could be copied to the server
by sending it the message putInGS (thus, making it a rep-
licate), then send the message beForwarder. At that point,
the state of the object is only stored in the server Smalltalk,
and any messages sent to the client object cause execution
in the server. In some cases, a developer may design the
application so that all instances of a particular client class
are intended to be forwarders. Whenever an instance of
such a class is fetched from the server, it should be instan-
tiated as a forwarder. This is specified by implementing the
method instancesAreForwarders in the client class to return
true. Two other ways to specify that certain objects are to
be manifested as forwarders in the client Smalltalk is by a
replication specification (described later) or by a connec-
tor. A connector is a mechanism connecting certain client
objects with certain server objects at the time the client
logs into the server. There are many different kinds of con-
nectors: some that connect classes and some that connect
class variables; there are those that connect class instance
variables; those that connect objects by name; and those
that connect objects by identity. Each type of connectors
allows a developer to specify that the client object is to be
manifested as a forwarder.
The Smalltalk Report

February 1996
Modifications to
replicates are flushed to

the server before any server
behavior is executed.
Another mechanism to manipulate server objects on
the client is with replicates. A replicate is a copy of a server
object that resides on the client. Some or all of the state of
the server object is copied in the replicate, and when a
message is sent to a replicate, the execution of its behavior
takes place on the client. Using replicates requires that a
mapping be defined between classes on the client and
classes on the server. At its simplest, this mapping can
specify that a server class maps to a client class with the
same name. This is the default mapping. You can also spec-
ify more complex mappings as objects are translated
between client and server. This is done by reimplementing
the instVarMap method in the class of the replicate. This
method should return nested arrays, where each sub-array
contains an instance variable name and a specification of
how it should be mapped. This allows a developer to han-
dle reordering, renaming, or omission
of instance variables when an object
moves from one domain to the other.

A key consideration when using
replicates is the amount of synchro-
nization that occurs between the cli-
ent replicate and its corresponding
server object. There are messages
available to the application developer
to explicitly manage keeping the two
objects in sync. However, it is much
easier to let the interface layer that manages replicates be
responsible for keeping the state of client and server objects
in sync. In this way, a replicate always accurately reflects the
state of the server object (based on the current transaction’s
point of view), wherever the object is used in the appli-
cation. This level of synchronization, called full transparen-
cy, is configurable by class. To enable full synchronization
for a class, send it the message makeGSTransparent.

When replicates are used in full transparency mode,
then modifications to replicates are managed automati-
cally. When the application modifies a replicate, it is auto-
matically marked dirty and changes are flushed to the
server at the appropriate time. For example, modifica-
tions to replicates are flushed to the server before any
server behavior is executed or when the transaction is
committed. When other users modify and commit
changes to server objects, those changes are not seen in
the replicate until the current transaction is committed or
aborted. At this time, the replicate is eligible to have its
state updated from the server, a behavior called faulting.
Ordinarily, the replicate will not be faulted until it is next
accessed. However, this default behavior can be overrid-
den by implementing a method called faultPolicy for the
class of the replicate. This method should return #immedi-
ate if the replicate should be faulted immediately when
the next transaction begins. It is also possible to cause
additional application code to be executed before or after
the replicate is faulted by implementing a preFault and
postFault method.

An important consideration when programming with
replicates is how to control the replication of composite
objects (objects with nested subobjects). Some client ap-
plications may only need a portion of the state of the serv-
er object, so why send more to the client than is needed?
When a replicate is being instantiated from a server
object, an application wants to control which instance
variables are retrieved and in what form the objects refer-
enced by those instance variables are created (as for-
warders or replicates). In addition, if the instance variable
is assigned a replicate, the application may also want to
specify how many levels deep to replicate. To exercise this
control, a developer implements the replicationSpec
method for the class of the replicate. This method returns
nested arrays where each subarray contains the name of
an instance variable and a specification of how it is to be
instantiated. The developer has the option to specify
whether the instance variable is to be instantiated as a

replicate, a forwarder, or a stub (dis-
cussed later). If the instance variable
is to be created as a replicate, the
developer can specify a minimum or
maximum number of levels to rep-
licate as well. The following example
shows the implementation of the
replicationSpec method for class
Employee, where the name instance
variable is replicated, the address
instance variable is replicated to at

least level 2, and the department instance variable is creat-
ed as a forwarder.

classmethod: Employee

replicationSpec

“Return nested arrays specifying how Employees are to be
replicated.”

^ super replicationSpec ,
#((name replicate)
(address min 2)
(department forwarder))

In cases where not all of a composite object is copied into
the client, some placeholder object must take the place of
each object that remained on the server. This object, called
a “stub,” maintains information concerning its corre-
sponding object on the server. When a stub is sent a mes-
sage, it has the ability to create a replicate, replace the stub
with the new replicate, and then resend the message to the
replicate. This happens transparently to the end user, so
application code does not have to test for the presence of
a stub object. It is also possible to turn a replicate into a
stub object. This is desirable if you want to free the space
taken up by the replicate and its subobjects. You can do
this by sending the message stubYourself to a replicate.

The mechanisms just described can be utilized in sev-
eral ways to partition and fine-tune an application for
maximum performance in a client/server environment.
Developers can exercise greater control over where exe-
cution of object behavior takes place and how much data
is transferred to the client. `
`

19

