
Smalltalk Idioms

Kent BeckFarewell and a wood pile
IT’S THE OBJECTS, STUPID
S   me awhile to see the obvious. Some-
times even longer than that. Three or four times in the
last month I’ve been confronted by problems I had a
hard time solving. In each case, the answer became clear
when I asked myself the simple question, “How can I
make an object to solve this problem for me?” You think
I’d have figured it out by now: got a problem? make an
object for it.

Here’s an example: I had to write an editor for a tree
structure. There were several ways of viewing and editing
the tree. On the left was a hierarchical list. On the top right
was a text editor on the currently selected node of the tree.
On the bottom right was a list of text editors on the sub-
nodes of the currently selected node (see Fig. 1).

Figure 2 shows the domain objects that live behind this
view. How is the editor going to work? Let’s say I have an
editor on the value 5 (Fig. 3). How are we going to write
the code to parse and install a new function? The first part
is simple enough:

FunctionEditor>>parse: aString
| new |
new := FunctionParse parse: aString.

But now we’re stuck. If we just say:

function := new

then the “right” instance variable of the BinaryFunction
(which the editor knows nothing about) won’t be updated.

“Make an object for it,” that’s the ticket. The object is an
EditingWrapper. When you go to edit a function, you first
wrap every node in the function tree, as shown in Figure 4.
Now the editor looks like Figure 5. And we can write the
parsing method like this:

FunctionEditor>>parse: aString
| new |
new := FunctionParse parse: aString.
function function: new

Kent Beck has been discovering Smalltalk idioms for ten years at
Tektronix, Apple Computer, and MasPar Computer. He is the
founder of First Class Software, which develops and distributes
developer tools for Smalltalk. He can be reached at First Class
Software, P.O. Box 226, Boulder Creek,CA 95006-0226, 408.338.4649
(voice),408.338.3666 (fax), or by email at 70761,1216 (Compuserve).
January 1996
If we parsed the string “@years”, the resulting picture
would look like Figure 6. When the BinaryFunction un-
wraps its children, the right function will be in place.

As I said, several times in the last month I’ve faced
baffling problems that became easy when I asked myself
the question, “How could I make an object to solve this
problem for me?” Sometimes it was a method that just
didn’t want to be simplified, so I created an object just for
that method. Sometimes it was a question of adding
features to an object for a particular purpose without clut-
tering the object (as in the editing example). I recommend
that the next time you run into a problem that just doesn’t
seem like it has a simple solution, try making an object for
it. It won’t always work, but when it does it’s sweet.

THE PARABLE OF THE WOOD PILE
The following is really about software. Really.

I live in the redwood forest. Fall in the forest has its own
set of smells, distinct and different from the smells of
every other season. Crushed dry ferns have a sharp, dusty

Figure 1.

Figure 2.
21

SMALLTALK IDIOMS
Figure 5.

Figure 6.

Figure 4.

Figure 3.

smell. Rotting bay nuts are like psychedelic bay leaves.
When we get our wood delivered, the smells of freshly
split oak and madrone add to the mix.

My house is down by the creek, maybe 25 feet below
the level of the driveway. There is a sheer cliff off to one
side and stone steps directly in front of the house. When
we get our customary two cords of wood delivered (for
you city folk, that’s a pretty damn big pile of wood, takes
most of a 2-ton truck to carry it), the easiest way to get it
down near the house is to throw it over the cliff, one stick
at a time, then go down later and stack it.

Wood chucking time has become something of a ritual
for me. The smells of the fall forest, the filtered fall light
through the surrounding redwoods, the ache of my gen-
erally-desk-bound body, the knowledge that I’m keeping
my family warm for the rest of the winter, all combine for
a satisfying couple of days.
22
My driveway is long and narrow, so when the truck
delivers the wood it makes a long pile, maybe 25 feet long
and eight or nine feet wide. The end of the pile is right at
the top of the cliff, so the first hour or so is easy—turn,
pick up a stick, turn, throw. Once I get settled into a
rhythm, I probably throw a stick every five seconds.

This year we had a dinner party to attend, and I didn’t
want to have to walk over pile of firewood all dressed up,
so I wanted to at least get a path cleared quickly. Once I
got the sticks close to the top of the cliff thrown, I noticed
that my progress slowed down. Instead of “turn, grab,
turn, throw” I was doing “walk, grab, walk, throw,” where
I was having to walk a few steps to get to the front of the
pile. It may not seem like much, but it slowed down my
throwing rate by half. The more progress I made, the fur-
ther I had to walk, the slower I went, the further my goal
of walking to the car without scuffing my shiny shoes
receded.

I’m an engineer at heart, and repetitive manual labor
leaves me plenty of time to think, so I wasn’t about to let
this state of affairs continue without at least trying to
bring my productivity back up. I discovered I could throw
light sticks down with one hand. On every trip to the front
of the wood pile I began picking up two sticks, a heavy
one in my left hand and a light one in my right. I’d throw
the light one one handed first, then heave the heavy one
with both. This let me amortize my walking over two
sticks. The pace picked up.

Pretty soon, though, I noticed I was still going slow. The
front of the pile kept receding as I worked, so my time
spent walking kept increasing. What I really needed was a
way to get back to working like I had worked at first, just
turning and throwing with no walking at all.

You’ve probably guessed the solution. I went to the pile
and tossed sticks the 10 or 15 feet to the top of the cliff. I
tossed 30–40 sticks, walked over, threw them down the
hill, then walked back. This way my walking was amor-
tized over so many sticks it didn’t even count. I had to
handle each stick twice, so my productivity was half of
what it was at the beginning, but I could sustain the pace
through the rest of the pile. No matter how far back the
front of the pile got, it was always easy to quickly toss a lit-
tle stack to the top of the cliff.

My wife and I made it to our party—shoes, suit, and
dress unscathed.

When an experienced team starts a project in Small-
talk, the first few months go smoothly. The first cut at the
domain model slides right in and away you go. Pretty
soon, though, the team starts to bog down. Decisions they
made without complete information begin to take their
toll. The easy progress of the early days is soon but a fond
memory. New functionality, rather than sliding in, has to
be shoved in with a pile driver. Quality and predictability
go out the window, because the team doesn’t know if the
next feature will fit with what’s there, in which case all will
be well, or it won’t fit, in which case who knows how long
it will take to shoehorn it in.

I have seen two unproductive reactions to this situa-
The Smalltalk Report

tion and one reasonable one. The first are the teams that
keep walking back and forth to the wood pile, no matter
how far it recedes. I call this “Smalltalk is more rope.”
These teams ignore the increasing risk and decreasing
productivity, but Smalltalk is forgiving enough that they
can keep their application sort of running while they add
new features. Throw in enough nil checks and isKindOf’s
and you can make almost anything work. The result is dis-
aster deferred. Eventually the team is asked to do some-
thing that just can’t be shoved into the system.

The shell-shocked veterans of “more rope” failures
often turn the other way. Ignoring the sticks right there
in front of them, they try to toss the whole pile close
before they start throwing down the hill. They insist on
creating the frameworks first. The application is divided
into strict layers and developers are only allowed to work
on their own layer. The layers don’t precisely fit, because
they are developed in isolation, but developers have no
choice but to carry on as best they can. The result is again
disaster deferred. The system gets big, because layers pro-
vide services no one needs and because there is no
view of the whole system that would allow large-scale
simplifications.

The sustainable solution is to find a balance between
moving the pile and tossing the logs. Toss some, move
some, toss some, move some, starting with tossing. (Jeff
McKenna had a great article about this years ago, and
Ward Cunningham has a pattern language called Checks
about the same idea: http://c2.com/ppr). Take advantage
of the quick wins to give you concrete information from
which to generalize. Make it run, make it right, make it
run, make it right.

FAREWELL
This is my last column, at least this go around, for T

S R. It’s been quite a ride, programming in
Smalltalk and trying to write about it. When I started,
when T S R started, we were the wild-
eyed purveyors of what many people saw as a crazy lan-
guage. Since then, Smalltalk has become the language of
January 1996
choice for many kinds of applications. Recently the Small-
talk market has been thrown into turmoil by the merger of
ParcPlace and Digitalk and their subsequent disappoint-
ing financial performance.

From that standpoint, it seems like a strange time to
quit. I’d like to go out on a high note, with noble Smalltalk
standing proudly head and shoulders above the crowd.
However, when I saw that I wasn’t putting the thought or
care into these columns that they, that you, deserve, I
knew the time had come.

I’ll still be involved in the Smalltalk world, in fact, more
than ever. You won’t get rid of me that easily! I’ll be unveiling
a one-day Smalltalk patterns course at Smalltalk Solutions
in March. I’m working on a book, T S B

P P: V , C, due out in the first
quarter next year. I’m scrambling to keep up with my prod-
ucts. I’m working on some fascinating contract programs.
To top it off, consulting has picked up since OOPSLA. The
only way you’ll be rid of me is if I drop dead of exhaustion.

Thanks
I’d like to thank all the people who helped me during

the last few years. In particular:
• Rick Friedman, for giving Smalltalkers a forum for our

voices when we were far out in the wilderness.
• John Pugh and Paul White, for all their work making

the Smalltalk Report work well.
• Elizabeth Upp and the production team at SIGS, for

dealing with late submissions, raw ASCII, and requests
for odd graphics.

• Liz St. Pierre, for hassling me in the gentlest possible
way consistent with results.

• Ward Cunningham, for help refining many of my best
column ideas.

• You, T S R readers, for support,
encouragement, email, and ideas. Without you I could
have written all the columns I liked, but no one would
have read them.

So long. I hope I see you Smalltalkin’ down the road. `

`

23

