Taking out the garbage

“One person’s trash is another person’s treasure.”

object-oriented programmers use it. In a gen-

eral sense, it means that the memory size of
a running program continually grows so less room is
available to create new objects. The cause is usually
dangling instances: objects that are no longer needed but
are still around, using valuable memory space. For C++,
dangling instances usually mean that the programmer
forgot to explicitly delete objects or failed to follow the
protocols for who is responsible for deleting. For Small-
talk, dangling instances are usually objects that are con-
sidered trash to the programmer but treasure to the
garbage collectors.

Thanks to the garbage collectors in nearly all Smalltalk
implementations, Smalltalk programmers aren’t burdened
with having to explicitly delete objects: they simply create
new objects as needed and let the garbage collectors
remove obsolete objects and reclaim the space. The
garbage collectors deem an object to be obsolete if it is no
longer referenced (directly or transitively) from the “root”
pointers that keep immortal objects around. But some-
times, programming errors can leave unintended, dan-
gling references to an object, causing it to live much longer
than it should.

In this article | introduce some common tools and
techniques for detecting, diagnosing, and treating dan-
gling instances problems. It is slanted toward the
VisualWorks environment and its memory management
architecture, but many of the concepts apply to other
Smalltalk dialects.

(4 IVI emory leak!”: it’s a scary phrase, yet so many

DETECTION: DO YOU HAVE MEMORY PROBLEM?

You might have a memory problem if:

1. Your cursor frequently changes to a garbage collection
or compaction cursor.

2. Your development image file grows progressively larg-
er each time you save it, especially if you feel you've
done nothing that would cause it to be larger.

3. The memory footprint of your image grows to be much
larger than you think it should be. You might notice
that less space is available to other programs or you
might detect it with your finger on the dynamically
allocated footprint pulse of Smalltalk.

4. You notice heavy thrashing: lots of disk 1/0 due to the

Derek Williams

operating system constantly swapping in and out the

memory allocated for use by Smalltalk.

5. You see a“low space notifier” or “out of memory” error

message.

These types of errors usually mean that memory prob-
lems have gotten out of hand. We’ll look at some steps you
can take to avoid getting to this point, but first let’s see
how each of these can occur. To understand these effects,
it helps to know a little about how your Smalltalk virtual
machine (a.k.a. object engine) manages memory.

The Smalltalk object engine divides the memory it uses
to store objects into a number of separate regions or
spaces. It does this to get the optimum benefit from dif-
ferent garbage collection schemes. For example, newly
created objects that are less than 1 KB in size are stored
into the Eden subspace in NewSpace. NewSpace is managed
by the scavenger garbage collector, which uses a two-
space copying algorithm. The scavenger runs as a back-
ground process, alternately copying surviving objects
between Eden and the two SurvivorSpaces. The two-space
algorithm works especially well for NewSpace, since most
new Smalltalk objects live very short lives and can be eas-
ily discarded simply by not copying them forward.

Objects that survive NewSpace are tenured into
OldSpace, which is managed by an incremental mark-and-
sweep garbage collector. OldSpace is unique in that it
dynamically grows as needed to accommodate the “ma-
ture” objects in the system. All other spaces are fixed in
size when the memory policy is installed (typically at
image startup).

You can control the balance between collecting gar-
bage and thus reclaiming space and growing the size of
OldSpace by changing memory policy parameters. When
arequest is made to allocate a new object and there sim-
ply isn't room for it, we say a low space condition has
occurred. It is then up to the memory policy to decide
what to do: to try to reclaim space by aggressively collect-
ing garbage and compacting objects or to simply ask for
more memory from the operating system. You can set a
cap at which reclamation will be favored over growth and
even limit the total memory size of the image.

Much of the partitioning of objects into spaces is done
“under the covers” and not directly visible to your
Smalltalk code. For example, you cannot find out which
space a given object resides in or find all the objects in a
particular space. But the parameters that control the

January 1996

11

| TAKING OUT THE GARBAGE

GC =)

Quick Garbage Collect
Finish Incremental GC

Compact Memory Full, Compacting

Garbage Collect

Figure 1. Cursors indicating you are running out of space.

memory management behaviors are available to your
Smalltalk code and you can modify them. For example,
you can set the space sizes based on your application
needs, check various garbage collection statistics, check
on the current size of OldSpace, explicitly invoke a garbage
collector, etc. There’s a lot more that can be said about how
the garbage collectors work and how to tailor and tune the
memory policy for your needs—that’s not the purpose of
this article. But you can start learning by reading the class
comments and documentation methods in the classes
ObjectMemory and MemoryPolicy or reading the Memory
Management chapter in the VISUALWORKS USER’S GUIDE.!
You should also read Kent Beck’s article on garbage collec-
tion in the February 1995 issue of this publication. It
explains how the garbage collection algorithms work in
detail and covers the Visual Smalltalk environment.

Although we’re not going to delve further into the object
engine’s memory management work, we can use our basic
knowledge of how it operates to help detect dangling
instance problems. Let’s review those five “warning signs”
and look at how each could occur.

Frequent cursor changes

The MemoryPolicy (through services in ObjectMemory) dis-
plays special cursors to show you when incremental
garbage collection and compaction activities are occur-
ring. Since these activities are typically in response to low
space conditions, they provide a visual clue to the state of
memory. Frequent collection or compaction cursors are
often early indicators that you are running out of space.
Figure 1 shows what these cursors look like.

Large image file size

Most Smalltalk applications are coded and unit tested
using development images that are frequently saved to
disk and then packaged into runtime images for further
testing and deployment. Usually the runtime images are
delivered to users who load, use, and exit them as needed,
but never save them again.

Some memory leaks can go undetected in runtime
images because the user starts at square one each time he
or she reloads the image. Since each image save writes all
the objects to disk, dangling instances have a way of stack-
ing up in a development environment. During develop-
ment, it's a good idea to occasionally look at the size of your
image file. If it grows larger than you would expect, you
have an early indicator of a potential memory problem.

Large memory footprint
You don't have to wait until you save your image to a
file to determine its size. Sending ObjectMemory

dynamicallyAllocatedFootprint will answer the total number
of bytes of memory your image is currently using. You
can send this message as often as you like (such as be-
fore and after testing an application scenario) to gather
measurements.

There are other services on the ObjectMemory class to give
you a view of the current sizes and state of memory. For
example, since only OldSpace will grow in size, you may only
be interested in oldBytes, rather than the total size.

Thrashing by the operating system

Recall that the image will grow in size until it reaches the
limit you set or until the operating system refuses to give
more memory to Smalltalk. You should set a cap so that
Smalltalk is a good citizen and leaves plenty of room for
other programs to run. If you don’'t and the image grows
too large, switching back and forth between Smalltalk and
other programs can lead to heavy swapping.

When running under MSWindows, you should be aware
that Windows will often politely let Smalltalk have so much
memory that it doesnt keep enough space for a good
working set of its own. When this happens, even a basic op-
eration like opening a new window can cause swapping.

Because thrashing is never a good thing, and because the
object engine never gives space back to the operating sys-
tem until you exit, you should choose your cap carefully.
If you would like to start favoring reclamation over growth
at x bytes and you never want your image to be larger than
y bytes, you can set a fixed value with something like:

ObjectMemory installMemoryPolicy:
(MemoryPolicy new
setDefaults;
growthRegimeUpperBound: X;
memoryUpperBound: y;
yourself).

Or you can get information about available or installed
memory from the operating system and use this as a basis
for setting a cap or controlling your own custom memory
policy. Also, the Runtime Packager tool has a window you
can use to set memory sizes when you build a runtime
image.

Low space notifier

If things are really bad, i.e., you’ve run out of room for new
objects, garbage collections do not reclaim enough space,
and the image cannot grow any more, you may see a low
space notifier.

The MemoryPolicy has no direct way of communicating
with the user to report that space is running dangerously
low. So, it invokes the low space notifier via the user in-
terrupt signal when it needs to say “Emergency: No
SpaceLeft” or “Space warning.”

The user interrupt signal is the same mechanism used
to invoke the emergency evaluator when Ctrl+Shift+C is
pressed. If you've tried to disable the emergency evaluator
for a runtime image or change the way it displays, you
should make sure that you’re not masking the low space

12

The Smalltalk Report

notifier. I've seen cases where low space con- Listing 1.

ditions were simply reported as “user inter-
rupts” and the end user had no idea what
was happening.

| dict |

DIAGNOSIS: FINDING THE CAUSE
So, based on the warning signs described
above, you think you have a memory prob-
lem—now what? We want to find exactly
which objects are not being cleaned up and
why.

A quick scan of instance counts can help
you find the dangling instances and narrow

“Faster than sending instanceCount to all classes”
ObjectMemory garbageCollect.
dict := ldentityDictionary new.
Object allSubclasses
do: [:ea | ea isMeta
ifFalse: [dict at: ea put: 0]].

ObjectMemory allObjectsDo:
[:ea] | count | (count :=dict at: ea class ifAbsent: []) notNil

(dict reject: [:ea | ea value < 200]) inspect.

ifTrue: [dict at: ea class put: count + 11]].

the set of classes to examine for potential
problems. A code snippet like the one in Listing 1 can help.

You’re now inspecting a dictionary that shows you
counts for all classes having greater than 200 instances
floating around. Choosing 200 as a cutoff is arbitrary—
substitute whatever works for the situation or create your
own list of classes to check. If you want to narrow the
search, you can replace Object with another parent class.
Once you have the inspector, you'll probably want to look
further, e.g., you may want to sort by class name:

self associations asSortedCollection:
[:a:b | akey name < b key name]

or by number of instances:

self associations asSortedCollection:
[:a:b | avalue >bvalue].

Once you've targeted a class that appears to have more
instances than it should, send alllnstances or
allinstancesWeakly: and inspect the result.

This is a rather brute-force approach to tracking down
runaway instances, but it's often all you need. You can
wait until runaway instances start to get out of hand,
interrupt your code if necessary, and run this snippet. For
example, if you see 1,000 instances of your Scooter class
and you were expecting only two or three, you have a
good place to start.

If you can run through an application scenario to con-
sistently create the problem or if you don’'t know whether
or not you have a problem, then check at regular intervals.
Periodic measurements taken with the code snippet in
Listing 1 and displaying the value of ObjectMemory
dynamicallyAllocatedFootprint can tell a lot.

It's a good idea to include some lightweight memory
diagnostics like the above even in a runtime image you
deliver to customers. For example, you might add a win-
dow somewhat off the beaten path to display footprint
sizes or instance counts on demand. These snippets add
very little to the size of a runtime image, and you may just
find that your customers can create memory problems
you never expected (e.g., by leaving an image running
steadily for several weeks at a time).

The AllocationProfiler in Advanced Tools can show you
which new objects a particular block of code allocates by

tracking calls to methods that create new objects. Since it
shows you only memory allocation and not reclamation,
be prepared to look through the complete picture
(remember, most new objects die quickly). But it is an
easy tool to use and gives detailed information. To use it,
simply send AllocationProfiler profile: and pass it a block to
measure. You can learn more about the AllocationProfiler
by reading the AbvaNceD TooLs USER’s GUIDE.?

Finally, I've implemented some of the above tech-
nigues in the Memory Diagnostics tool, which you can
get from the University of Illinois Smalltalk archives
(http://st-www.cs.uiuc.edu/).

TREATMENT: FINDING AND CLEANING UP REFERENCES

The measurements you took above should tell you at least

two things: (1) what the dangling instances are and (2)

what application scenario creates them. But often you

need to look further: you want to know exactly where the
dangling references are coming from.

You can determine this by inspecting one of the dan-
gling instances and looking at the reference path to it.
There are several ways to follow reference paths:

1. Manually follow the path of references by sending
allowners or allOwnersWeakly: and inspecting the result.
This will show you the immediate references to your
dangling object. Sending allOwners or allOwnersWeakly:
to each of these references will show you the next level.
You can continue this process until you start to see
objects or methods that point to potential problems.

2. Use the ReferencePathCollector in Advanced Tools. If
you're inspecting one of your dangling instances, you
can send ReferencePathCollector allReferencePathsTo: self
and inspect the result. Read the comments for class
ReferencePathCollector for more information.

3. Use the PointerFinder tool written by Hans-Martin
Mosner. You can get it from the author’s web page at
http://donald.heeg.de/pub/hmm-goodies/.

The reference path will often provide its own clues to ex-
actly which portion of code caused the dangling instance
and why it is not being cleaned up. Since it helps to know
what to look for, here are some common causes.

1. Unbroken dependencies. In many cases, dangling

January 1996

13

instances are due to one object being referenced as a
dependent of another object that is still in use. The de-
pendent object may no longer be needed, but it isn't col-
lected because it is still referenced by the “parent”
object. Usually this is caused by a failure to send
removeDependent: or one of the related methods.
Keeping track of all the places where dependencies are
set and broken can sometimes be difficult, given all the
different layers and frameworks that use them (depen-
dency transformers, adapters, value models, etc.) and
all the message variants.

The unbroken dependency problem is much easier
to create if you add dependents to an object that does
not track them in an instance variable (e.g., it does not
override Object>>myDependents). In this case, the depen-
dency connection is kept in the global DependentsFields
dictionary. With “local” dependents, a failure to break
dependencies will be cleaned up when the parentis no
longer referenced. But when the dependencies are
tracked in the DependentsFields dictionary, you have a
new pair of references that will keep parent and depen-
dent around. So, inspecting DependentsFields is often
a good way to look for problems.

. Overlooked object references. Dependency connec-

tions certainly aren’t the only common ways that objects
reference each other. Indeed, object connections are at
the very heart of object design—those associations and
aggregations we like so much. You may need to clean up
some of your own object references through a release,
finalization, or similar protocol. For example, you can
use the release event for ApplicationModel classes to “nil
out” or otherwise clean up references to objects refer-
enced by instance variables.

It’s easy to forget about object caches held onto by
class variables and class instance variables. While such
caches are nice for boosting performance, don't forget
about them. You may want to implement and send
class-side “uninitialize” methods to clear out caches
when necessary. If you're using ENVY, you may find
yourself doing this as part of removing methods to un-
load an application.

. Failure to copy. So many collection operations answer

copies that we sometimes take it for granted and
assume we always have either a shallow copy of a col-
lection or a deep copy of the collection and its con-
tents. This assumption can be dangerous and can not
only indirectly be a source of dangling references, but
also lead to other errors such as one client of a collec-

tion modifying its contents and affecting others. This
is, by the way, why a method answering a literal string
that is coded in it is generally a bad idea.

How you manage references and copies really depends on
what you are trying to do, so it’s hard to give general rules.
But if you suspect a problem caused by a reference to a
shared object rather than a copy, you can use the identity
comparison (==) or compare object identifiers to see if the
references really are to the same object. To see the object
identifier, send asOop to the object and print or inspect
the result.

Finally, now that you've found the dangling instances
and cleaned up the cause, what do you do with all those
“zombies” floating around?

It’s best to start with a clean image and load your code
into it. But if you’re fond of your current image and want
to keep it, you'll need to do your own clean up. When
cleaning up an image, track back to the root cause and
correct it. For example, you may have to remove depen-
dency connections from an inspector on DependentsFields.

I often hear the suggestion to use become: String new to
“morph” a dangling object so that it loses its instance vari-
able links. Using become: should always be a last result
and done with great care. And you should keep in mind
how your Smalltalk implements it—whether it swaps
pointers or copies state.

CONCLUSION

Now that you have the fear of runaway memory prob-
lems, take comfort: it's usually a rare occurrence. The
garbage collectors do an amazing job of managing mem-
ory efficiently and the class libraries are tolerant of poten-
tial errors. Only rarely do | have to pull out this bag of
tricks to help someone diagnose a memory problem. But
by using some of these techniques, you’ll have the diag-
nostics to easily watch for problems and, when you find
one, the tools to track it down and fix it. &

References

1. ParcPlace Systems. VisuaALWoRKs USER’s GUIDE, Sunnyvale, CA,
1994.

2. ParcPlace Systems. ADVANCED TooLs USER’s GUIDE, Sunnyvale,
CA, 1994.

Derek Williams has been developing vertical client/server appli-
cations for 11 years and using Smalltalk for the past 4 years. He
can be reached at derek_wi@hboc.com.

continued on page 32

14

The Smalltalk Report

