
A hierarchy that acts
like a class

Bobby Woolf
W   for a client, I developed
a miniframework that incorporated several design
patterns. These patterns combined to make a

rather complex hierarchy of subtypes act like a single class.
Besides providing useful functionality that the client and
their customers needed (which never hurts!), the frame-
work successfully demonstrated the following techniques:

• what I call “how to do a case statement in Smalltalk,”
the Objects from States pattern1

• an example of the Reusability through Self-
Encapsulation pattern language2

• a variation of the Factory Method pattern3

• an example of what I call the “Null Object” pattern,
also known as NoWorker4 and Null Representation5

• limited amounts of visual behavior in domain objects
The framework itself is an example of a case statement
using Self-Encapsulation. In it are a set of Factory Meth-
ods and a Null Object. Even though it is a framework of
domain objects, it still contains some application model
behavior used to display the objects in a view. Not only
does the framework show simple examples of these pat-
terns, but it also shows how to combine individual pat-
terns together to solve more complex problems.

THE PROBLEM
Part of this client’s system consisted of a questionnaire the
user could display so that he could answer it. Analysis
revealed that the domain objects were Questionnaire,
which contained a list of Questions, each of which had
exactly one Answer. Further requirements gathering dis-
covered that there were three different ways a user could
answer a question: most questions needed yes/no
answers; some needed one of a list of possible answers;
others needed freeform text answers. The view could eas-
ily indicate these different ways of answering using check
boxes, combo boxes, and input field widgets, respectively.

Most of the domain code had already been imple-
mented for me. There were already Questionnaire, Question,
and Answer classes, and the container relationships
between the three had been defined. The problem was
the difficulty supporting the three different ways of
answering and the three different kinds of visual widgets
used to input and display answers.

The solution that had been implemented required a
lot of fairly ugly code in the Answer class. The class had
4

three instance variables: yesOrNo, selection, and
responseText. Each instance only used one of those vari-
ables; the other two were always nil. The displayString
method printed-out each variable’s value as long as it
wasn’t nil; because only one variable was not nil at any
given time, that’s the only one that was printed. What the
implementation did not solve was displaying a particular
Answer as different widgets. When I started on the project,
testing methods like isYesNo, isSelection, and isText were
about to be introduced.

SMALLTALK CASE STATEMENT
Obviously Answer was becoming too complex. The solu-
tion I devised was to expand the Answer class into a hier-
archy of classes:

Answer ()
BooleanAnswer (yesOrNo)
EnumerationAnswer (responseChoices, responseIndex)
TextAnswer (responseText)

This way each question could have the appropriate type
of answer: boolean, symbol, or text. None of the Answer
objects wasted any instance variables. Each class knew
what its instance variables’ types were and how to han-
dle them. This factored the complexity of handling
these different possibilities into separate classes so that
the decisions each class had to make were actually quite
simple.

The reason I call this hierarchy an example of a Small-
talk case statement is that it eliminates the need for test-
ing methods like isYesNo, isSelection, and isText. An ex-
ample of a case statement method would be something
like

Answer>>visualWidget
self isYesNo ifTrue: [“Use a check box.”].
self isSelection ifTrue: [“Use a combo box.”].
self isText ifTrue: [“Use an input field.”].

This is poor object-oriented (O-O) style. Sometimes de-
velopers clamor for Smalltalk to have a case statement,
usually because they’re trying to write code like this.
Although all of us write code like this sometimes, it is best
avoided. Factoring the class into a hierarchy allowed me
to eliminate the testing methods and simplify the code
like this:
The Smalltalk Report

Answer>>visualWidget
^self subclassResponsibility

BooleanAnswer>>visualWidget
“Use a check box.”

EnumerationAnswer>>visualWidget
“Use a combo box.”

TextAnswer>>visualWidget
“Use an input field.”

This is a case statement via polymorphism and inheri-
tance. Just send the message and whatever implementer
gets run is the correct case. This forces the “testing” to be
encapsulated within the hierarchy where it can easily be
reused. If the results of the testing need to be changed, the
code is easier to maintain because it is so cleanly encapsu-
lated. Finally, the differences between the peer classes are
easy to see; just look at the methods they implement
instead of inheriting.

This case statement framework is also easy to extend to
add new cases. For an example of this, see the “Null
Object” section of this article.

SELF-ENCAPSULATION
A problem this hierarchy introduced is that now each
particular Question instance had to know what kind of
Answer instance it had. To avoid this problem, I wanted
all of the concrete classes to be polymorphically equiva-
lent. This means that they would all have the same com-
mon interface so that I could generally treat any
instance as an Answer without regard to which concrete
subclass it was.

To do this, I defined the common interface in Answer
with messages like response, response:, and displayString. In
Answer, each of these methods returned the subclass-
Responsibility error. Each subclass implemented the mes-
sages appropriately in terms of its state. For example,
here’s how EnumerationAnswer handled the response aspect:

EnumerationAnswer>>response
| index |
index := self responseIndex.
^index == 0

ifTrue: [nil]
ifFalse: [self responseChoices at: index]

EnumerationAnswer>>response: newResponse
self responseIndex:

(self responseChoices
identityIndexOf: newResponse)

This is an example of the Reusability through Self-Encap-
sulation pattern language, albeit an extremely simple ex-
ample. The language shows how to implement an ex-
tensible yet well-encapsulated hierarchy. An abstract
superclass defines the interface the subclasses will follow.
The interface is implemented in terms of a small number
of kernel methods that each subclass must implement
appropriately. As the language suggests, Answer defines
6

the hierarchy’s interface and leaves the implementation
details to the subclasses.

This could be considered a variation of the Factor a
Superclass pattern.6 That pattern starts with a number of
peer classes and factors their shared variables and behav-
ior into a common superclass so that the subclasses do not
duplicate each other’s variables and behavior. What I did
with Answer was the same process in reverse; I started with
one class and factored it into many subclasses. I use the
superclass to define a common interface rather than
implement common behavior, so my efforts are more rem-
iniscent of Self-Encapsulation than Factor a Superclass.

FACTORY METHOD
Another problem the Answer hierarchy introduced is the
matter of assuring that the right kind of Answer instance gets
assigned to each Question. How does a Question phrased as a
yes/no question get a BooleanAnswer? How does one with a
list of possible answers specify that it needs not only an
EnumerationAnswer but the list of choices as well?

To solve this problem, I introduced the following mes-
sages into Question: useYesNoAnswer, usePossibleAnswers:,
and useTextAnswer. This way, as each Question was created,
the answer details could be specified as well. Here are
some examples:

question1 := (Question text: ‘Do chickens have lips?’)
useYesNoAnswer.

question2 := (Question text: ‘Are you lazy?’)
usePossibleAnswers:

#(#always #sometimes #never).
question3 := (Question text: ‘How old are you?’)

useTextAnswer.

I wanted to hide the complexity of the Answer hierarchy
and maintain the illusion that it was still just one class.
This way the one class could actually manage the other
classes and their use. This will also encapsulate this
management within the class. Because this is not a com-
plicated hierarchy, its management is fairly simple.
Answer’s instance creation protocol just has to allow for
creating each kind of answer. Here are the methods that
do this:

Answer class>>yesNoAnswer
^BooleanAnswer new

Answer class>>possibleAnswers: answerList
^EnumerationAnswer new responseChoices: answerList

Answer class>>textAnswer
^TextAnswer new

Question in turn just delegates the Answer creation to that
class:

Question>>useYesNoAnswer
self answer: Answer yesNoAnswer

Question>>usePossibleAnswers: answerList
The Smalltalk Report

self answer: (Answer possibleAnswers: answerList)

Question>>useTextAnswer
self answer: Answer textAnswer

The three instance creation methods in Answer are exam-
ples of the Factory Method pattern, or at least a variation
thereof. Gamma et al. say that the “Factory Method lets a
class defer instantiation to subclasses.” A classic example
in Smalltalk-80 is the way View defines the method
defaultControllerClass. Each subclass of View subimple-
ments defaultControllerClass to return the class for its con-
troller. Thus defaultControllerClass is a Factory Method.

The Factory Methods in Answer are yesNoAnswer,
possibleAnswers:, and textAnswer. Because they are not
standard protocol that is overridden in subclasses, they
are not standard Factory Method examples. However,
they are a variation on the same theme because they use
message sends to hide the existence of the various Answer
subclasses, as well as their names and interfaces. As far as
a collaborator like Question is concerned, there is only one
Answer class (not a hierarchy) and it is able to act in these
various ways. This encapsulates the hierarchy and simpli-
fies its interface to the rest of the system.

I cannot claim to have invented this technique. In Visu-
alWorks, Filename uses it to determine which of its sub-
classes to use. Similarly, CompositePart uses it to determine
which Wrapper class to use.

Alternate solution: Question hierarchy
When analyzing the requirements and designing a so-
lution, I considered developing a Question hierarchy as well
as an Answer hierarchy. This would have incorporated
Factory Method more directly by using subclassing (as the
pattern suggests). The Question class would have defined
a method like defaultAnswer in terms of defaultAnswerClass.
Then Question subclasses would override defaultAnswerClass
to return the appropriate Answer subclass.

For example:

Question>>defaultAnswer
^self defaultAnswerClass new

Question>>defaultAnswerClass
^Answer

BooleanQuestion>>defaultAnswerClass
^BooleanAnswer

and so forth for EnumerationQuestion>>defaultAnswerClass
and TextQuestion>>defaultAnswerClass. In fact, I did imple-
ment Question>>defaultAnswerClass in preparation for such
a protocol.

This combining of dual hierarchies is an example of
the Bridge pattern, where an abstraction is decoupled
from its implementation by implementing it in two hier-
archies. The two hierarchies can be extended indepen-
dently, and because they are connected by a standard
interface, most any pair of instances from the two hierar-
chies can work together.3
January 1996
The problem with Question and Answer hierarchies is
that the classes are not decoupled from each other. There
is a one-to-one correspondence between the classes in
the two hierarchies: BooleanQuestion/BooleanAnswer,
EnumerationQuestion/EnumerationAnswer, and TextQues-
tion/TextAnswer. Anytime a new class was added to one
hierarchy, a corresponding class just like it would need to
be added to the other hierarchy, e.g., RangeQuestion would
require SliderAnswer. So these hierarchies are not truly
decoupled; in fact, they require duplicate effort to extend
both hierarchies.

Another problem with the Question hierarchy is that
subclasses would not have behaved differently from their
superclass. All Questions were essentially the same, even
though they expected different types of answers.
Hopefully, those that claimed to need a yes/no answer
were phrased as a yes/no question, but there was no way
to enforce this in BooleanQuestion.

In the end, although an Answer hierarchy looked prom-
ising, a similar Question hierarchy not only wasn’t helpful,
but was in fact counterproductive. The Question subclass-
es would not have introduced any helpful behavior but
would have required duplicate effort. Thus a Question
hierarchy was not necessary.

Tangent topic: SelectionState class?
Kent Beck recently wrote an excellent column, “Clean
code: Pipe dream or state of mind?”7 In it, he describes
how he factored out a State Object using two classes,
SingleSelectionState and GroupSelectionState, a terrific solu-
tion to the problem he was facing. He might have taken the
solution one step further by using the Factory Method
variation described here. Using it, he would introduce an
abstract class, SelectionState.

The SelectionState class would define the interface for all
SelectionState instances (SingleSelectionState, Group-
SelectionState, and eventually DelegationSelectionState). It
would also serve as the hierarchy’s interface to the rest of
the system (collaborators such as SelectionTool). Then
methods like SelectionTool>>setSelectionState: could be
moved into SelectionState (probably as
SelectionState>>setSelectionState: aFigure). setSelectionState:
is a fairly messy method that must contain a lot of knowl-
edge about the classes in the SelectionState hierarchy.
Notice that when Kent introduced an additional class,
DelegationSelectionState, he had to rewrite this method.
This messiness indicates that the method should be
encapsulated within the hierarchy, which moving it to
SelectionState would do. Also, if setSelectionState: were ever
needed by another collaborator that was not a Selection-
Tool, the method would be available for reuse.

NULL OBJECT
Although requirements gathering discovered fairly early
on that there were three types of answers—yes/no, list of
choices, and freeform text—we discovered later that there
was actually a fourth, hidden case to be considered. Some
“questions” in the questionnaire were actually not ques-
7

8

CLASS-LIKE HIERARCHY
A Null Object supports
an extensive, customized

interface while
encapsulating how to

“do nothing.”
tions per se, but headings for subsequent questions. Such
a question might be “Check each of the following traits
that describes you:”

Why not Heading?
The problem this introduces is that such a heading is
more of a Heading object than a Question object. Both have
text, but headings don’t have answers the way questions
do. But then how should this be displayed in a view?

The questionnaire was displayed
as a table with two main columns,
question and answer. Every row was
expected to have two aspects that
would be displayed in the two
columns. Thus Heading needed to
have an answer aspect just like
Question, and the heading’s answer
would need to be able to display
itself the way an Answer can.

This caused Heading to work just
like a Question, so I found no need for
a separate Heading class. This solution
may be an example of improperly let-
ting the view define the domain; iterating over the design
might produce a better one. Yet I feel that the solution
described below turned out pretty well and may in fact be
the most graceful way to hide the exceptions to some other-
wise simple and uniform rules.

Perhaps another reason I rolled Heading into the
Question class is that my deadline for completing this sub-
system was rapidly approaching. It’s funny how when I’m
near a deadline, the current design I’ve already imple-
mented can look much better than an alternative that
requires rewriting a lot of code!

A heading’s answer
Modeling the heading as a Question object, it had to have
an Answer, but none of the three Answer subclasses
applied. For this purpose, I developed a fourth Answer
subclass called NullAnswer:

Answer ()
NullAnswer ()

As a subclass of Answer, NullAnswer preserved the Answer
interface, but did so without doing anything. Here are
some examples of the methods it defined:

NullAnswer>>response
^nil

NullAnswer>>displayString
^’n/a’

NullAnswer is an example of what I call the Null Object pat-
tern. I haven’t seen documentation for this pattern pub-
lished anywhere, but it is discussed fairly often. The pat-
tern describes an object that shares the same interface as
others of its type but that reacts to these methods by doing
nothing. The trick is in designing, for each message, what
doing nothing means. Typically it means getters that
return nil or empty collections and display methods that
show the object as null. Setter methods are usually
ignored; they can create a real instance and substitute it
for the Null Object, but this is more the behavior of a
Proxy3 than a Null Object.

The beauty of a Null Object is that it supports an exten-
sive, customized interface and encapsulates the decisions
about how it should “do nothing.” nil is perhaps the most

famous Null Object, but it doesn’t
really count because its interface is
neither extensive nor customized.
Yet programmers often use nil in a
variable that hasn’t been assigned
yet. This leads to copious amounts of
code that constantly check the vari-
able for nil before sending it mes-
sages. This code can be simplified by
assigning the variable a Null Object
of the correct type and then sending
the variable messages with impunity.
Also, rather than each collaborator
deciding what to do when the var-

iable is nil, these decisions are encapsulated within the
Null Object for reuse and consistency across all collabora-
tors.

Adding NullAnswer
The infrastructure to support the new NullAnswer class
was easy to introduce because the hierarchy was well
encapsulated. It consisted of exactly one method:

Answer class>>nullAnswer
^NullAnswer new

Then collaborators, such as Question, just needed to tie
into the expanded interface in a convenient way:

Question>>useNullAnswer
self answer: Answer nullAnswer

Other collaborators could tie in just as easily.

VISUAL CODE IN DOMAIN OBJECTS
One of the distinguishing factors of the different types of
answers is the way they were to be displayed. As described
earlier, a question could be displayed as a check box, a
combo box, or an input field. Also, a null answer would
need to be displayed with a “do nothing” widget.

Much has been written recently about the importance
of separating domain and application behavior, including
by me.8 Basically, domain objects represent core business
behavior, while application objects know how to display
domain objects in useful ways. This is the basic architec-
ture I follow for all of my development, including the
Questionnaire framework.

Questionnaire is the root of the domain framework de-
scribed earlier. In turn, I also implemented a correspond-
ing QuestionnaireUI class to represent Questionnaires.
(Because I was developing in VisualWorks, QuestionnaireUI
The Smalltalk Report

was a subclass of ApplicationModel.) QuestionnaireUI was
essentially a glorified table sort of widget where each row
displayed a question. The table had two main columns, the
question text and the question answer.

Why not AnswerUI?
The strength and limitation of this simple design are that
there were no application models for the Questions and
their Answers. I did not want these application models
because the QuestionnaireUI itself was just a table, practi-
cally a TableView or a DataSetView (in VisualWorks). Just as
those classes don’t contain separate “RowView” and
“CellView” classes, I didn’t want QuestionnaireUI to contain
numerous QuestionUI objects. Those would do nothing
more than contain QuestionTextUI and AnswerUI objects,
each of which would do little except to contain a single
view such as InputFieldView or ComboBoxView. This seemed
to me like an explosion of custom classes and do-practi-
cally-nothing objects, a complication I wanted to avoid.
Once again, avoiding these classes appears to be the most
graceful way to hide complicated exceptions to otherwise
simple, uniform rules.

Had there been an AnswerUI class, it could have made
the decision as to what kind of widget to use to display
each kind of Answer (its domain model). Actually, this
might have necessitated the need for a separate AnswerUI
subclass for each Answer subclass. Then the AnswerUI hier-
archy would have been tightly bound to the Answer hier-
archy and duplicate effort would have been required to
extend both in tandem. In any event, I did not have any
AnswerUI class available. All I had was a cell in a table that
was supposed to display an answer and an Answer domain
object that contained the data for that cell.

How to display an Answer
Because the Questions and Answers did not have their own
application model counterparts, there was no obvious
place to put the code that decided how to display the dif-
ferent types of Answers. The way I solved this problem was
to have the cell ask the domain object what widget should
be used to display it. The domain object would return the
widget and the table would display that widget in the cor-
responding cell.

This necessitated introducing the message visualWidget
into the Answer hierarchy (as shown earlier). Each subclass
would return an instance of the widget appropriate for
itself. Thus visualWidget is another example of the Factory
Method pattern, a more accurate example, since subclass-
es override the superimplementer.

Adding an application layer method like visualWidget
into a domain layer object like Answer is certainly unusu-
al, but not necessarily wrong. It was, after all, a single
method, not a whole suite of behaviors that could easily
become indistinguishable and inseparable from the
domain behavior. Furthermore, its behavior is likely to be
appropriate for any application layer that might be built
on this domain, so there is little need to be able to swap
one application object in for another.
January 1996
Finally, I was still able to distinguish the application
code from the domain code in this domain class using
ENVY (ENVY/Developer, Object Technology Internation-
al, Inc.). I defined the Answer hierarchy in the Domain
application. Then I extended each of the hierarchy’s class-
es in the UI application to add the visualWidget method.
This not only clarified which Answer methods were for UI
behavior, but it also meant that a developer could easily
unload all UI code from the image—even that which the
domain classes contained—by unloading the UI
application.

CONCLUSION
One simple class in one minor part of a system turned out
to employ a number of powerful O-O techniques. Answer
was conceptually an uncomplicated little class that
turned out to have multiple personalities. As the code to
support those personalities grew, the need to expand the
class into a hierarchy became apparent. But because the
complexity of the hierarchy distracted from the simplicity
of the class, the need to hide this complexity became ap-
parent as well. I was able to develop this complex hier-
archy with a simple, single class–like interface by using
and combining the following techniques:

• Smalltalk Case Statement: This is what led to the
hierarchy. Each case was represented as a separate
class.

• Self-Encapsulation: This is what led to the abstract
superclass. It defined the public interface that all
subclasses would support so that various instances
could be treated polymorphically.

• Factory Method: This hid the concrete subclasses so that
they were never referenced from outside the hierarchy.
The hierarchy’s collaborators interfaced with the ab-
stract superclass, telling it what behavior was expected
from a new instance and trusting the superclass to
return an appropriate instance.

• Null Object: This substituted as the answer for a
question that did not need an answer. It supported the
abstract superclass’s interface and thus could be used
just like any other concrete subclass. And it encap-
sulated the “do nothing” code so that all questions
without answers would behave the same.

• Visual Code in Domain Objects: This acted as the
application object for a domain object whose display was
so simple that it did not need a separate application
object. ENVY extensions demonstrated that separate
objects are not the only way to separate independent
layers of code.

I hope this successfully illustrates these techniques and
shows how they may be used to solve real-world prob-
lems. I feel it is important not only that we document
these techniques as reusable design patterns and pattern
languages, but also that we show how they can be applied
in practice to help develop better-quality software. I hope
this experience report will prove useful to you. Please feel
free to contact me at woolf@acm.org if you have any
(tastefully phrased) questions or comments. `
`

9

CLASS-LIKE HIERARCHY
References
1. Beck, K. Death to case statements, part 2, T S

R 3(4), 1994.
2. Auer, K. Reusability through self-encapsulation, Coplien, J.O.

and D.C. Schmidt, Eds., P L  P

D, Addison-Wesley, Reading, MA, 1995.
3. Gamma, E., R. Helm, R. Johnson, and J. Vlissides. D

P: E  R O-O S,
Addison-Wesley, Reading, MA, 1995.

4. Hendley, G. The NoWorker pattern, available from the author at
ghendley@ksccary.com

5. Carlini, G. Type and implementation, available from the author
at giuliano@filenet.com

6. Beck, K. Inheritance: The rest of the story, T S

R 3(1), 1993.
7. Beck, K. Clean code: Pipe dream or state of mind? T

S R 4(8):20–22, 1995.
8. Woolf, B. Making MVC code more reusable, T S

R 4(4):15–18, 1995.

Bobby Woolf is a Member of Technical Staff at Knowledge Systems
Corp. in Cary, North Carolina. He is actively engaged in the patterns
movement that is seeking to document common software de-
velopment techniques.Comments are welcome at woolf@acm.org.
The Smalltalk Report10

