
Balša Šarenac, Stéphane Ducasse, Guillermo Polito and Gordana Rakić

Modular and Extensible Extract
Method

1

EvreffervE

Introduction

‣ Refactoring

‣ Transformations

‣ Composition

‣ Extract Method

‣ Source method

‣ Extracted method

2

Example
Extracting a selection from a method

3

Goals

‣ Enable users to define their own refactorings

‣ Redesign existing refactorings into modular definitions

4

Contributions

‣ Analysis of the existing Extract Method refactoring monolithic implementation.

‣ Definition of simplified rules for supporting the refactoring in the presence of
multiple assignments, returns, and non-local returns.

‣ Definition of a modular Extract Method refactoring based on elementary
operations.

‣ Reuse and extension of the Extract Method refactoring modular logic to
define domain-specific refactorings: namely Extract SetUp refactoring for
SUnit (Pharo’s testing framework) and Extract with Pragma refactoring for
Slang (virtual machine generator).

5

Legacy implementation
Pros and cons of legacy implementation

‣ Pros:

‣ Mostly correct implementation

‣ Correct precondition logic

‣ Cons:

‣ Mixed calculations, precondition
checking and transformation setup
logic

‣ Mixed transformation logic and user
interaction

‣ Monolithic implementation

6

Analysis
Returns

‣ Returning a value from the extracted method

‣ Wrapping the extracted method’s invocation in the source method in a return
statement

7

Analysis
Returns

8

ExampleClass >> foo: aString

^ self validate: aString

ExampleClass >> foo: aString

^ self extractedMethod: aString

ExampleClass >> extractedMethod: aString

^ self validate: aString

a

Analysis
Assignments

9

ExampleClass >> foo

| a |

 a := 3 + (2 sqrt - 4) - (4 + 2 sqrt).

 ^ self validate: a

ExampleClass >> foo

| a |

 a := self extractedMethod.

 ^ self validate: a

ExampleClass >> extractedMethod

| a |

a := 3 + (2 sqrt - 4) - (4 + 2 sqrt)

^ a

Analysis
Multiple assignments

10

ExampleClass >> foo

| a b c d |

 a := 3.

b := self bar: a.

c := self baz: b.

d := self doSomething.

 ^ self validate: c and: d

ExampleClass >> foo

| b c d |

b := self extractedMethod.

c := self baz: b.

d := self doSomething.

^ self validate: c and: d

ExampleClass >> extractedMethod

| a b |

a := 3.

b := self bar: a.

^ b

Simplifications
Returns & Multiple assignments

‣ The extracted method can always return

‣ Add a return in the sender (source method) only if the last statement of the
selection is the return statement

‣ Multiple assignments can be extracted only if at most one of the variables is
used after the selection in the source method

11

Analysis
Non-local returning blocks

12

ExampleClass >> foo

| c |

c ifOdd: [^ true].

^ self validate: c

Simplification
Non-local returning blocks

‣ Has single exit point

13

New architecture
‣Prepare for execution

‣Calculate temporaries

‣Determine which assignment variables are used after the selection

‣Identify arguments for the extracted method

‣Determine if the source method needs to return the extracted method

‣Precondition checking

‣Parse tree and selected code can be parsed

‣Selection is valid and extractable

‣Temporaries or assignments shouldn’t be read before written

‣Subtree has at maximum one assignment

‣Subtree has a single exit point

‣Transformation

‣Create source for the extracted method

‣Search for method with equivalent parse tree

‣Create a message send to the extracted or found method

‣Perform transformations

14

15

Results

16

17

Extract SetUp Method

18

ExampleTest >> testM

| a |

a := ComplexObject new.

a doSomething

self assert: a size equals: 4

ExampleTest >> testN

| a |

a := ComplexObject new.

a doSomething.

self assertEmpty: a

ExampleTest >> setUp

super setUp.

a := ComplexObject new.

a doSomething

ExampleTest >> testM

self assert: a size equals: 4

ExampleTest >> testN

self assertEmpty: a

19

Extract With Pragma

20

ExampleClass >> m

<var: ‘c’ declareC: ‘int’>

| c |

c := 1 + 3.

^ c * self calculation

ExampleClass >> m

<var: ‘c’ declareC: ‘int’>

| c |

c := self extractedMethod.

^ c * self calculation

ExampleClass >> extractedMethod

<var: ‘c’ declareC: ‘int’>

| c |

c := 1 + 3.

^ c

21

Conclusion

• Challenges when implementing the Extract Method in Pharo

• Leverage composition to create Extract Method

• Two use cases of domain specific refactorings:

• Extract SetUp Method

• Extract with Pragma

22

