Modular and Extensible Extract
Method

Bal$a Sarenac, Stéphane Ducasse, Guillermo Polito and Gordana Rakié

V 4

h s Evref

Introduction

> Refactoring
> Transformations
> Composition
> Extract Method
> Source method

» Extracted method

x = O Method: MyClass>>m v

» E1Refactoring-Core ~ (c)MyClass » instance side m
E1Refactoring-Core-Tests accessing
Refactoring-Critics path commands
Refactoring-Critics-Tests
» [E1Refactoring-DataForTestin
EXtI » [E1Refactoring-Environment
E1Refactoring-Environment-T
=1Refactoring-Examples
» [E1Refactoring-Transformatio
» [E1Refactoring-Transformatio
» [E1Refactoring-UI
» [E1Refactoring-UI-Tests

» [SystemCommands-Refactorin

1 SvstemCommands-Refactorin
Refactoring g Filter...

@ A1l Packages O Scoped View O Projects | @ Flat O Hier. | @ Inst. side O Class side | @ Methods O Vars | Class refs. @ Imple
%? Dependencies x (©) MyClass X ? Comment x ¥m X < Inst. side 1 x NE &« »

i

| a |
a:=3+(4%6).
“a + selfn

1/4 [1] % # path commands [| extension | F +L W

Goals

> Enable users to define their own refactorings

> Redesign existing refactorings into modular definitions

Contributions

> Analysis of the existing Extract Method refactoring monolithic implementation.

> Definition of simplified rules for supporting the refactoring in the presence of
multiple assignments, returns, and non-local returns.

> Definition of a modular Extract Method refactoring based on elementary
operations.

> Reuse and extension of the Extract Method refactoring modular logic to
define domain-specific refactorings: namely Extract SetUp refactoring for
SUnit (Pharo’s testing framework) and Extract with Pragma refactoring for
Slang (virtual machine generator).

Legacy implementation

Pros and cons of legacy implementation

> Pros: » Cons:
> Mostly correct implementation > Mixed calculations, precondition
checking and transformation setup
> Correct precondition logic logic

> Mixed transformation logic and user
Interaction

> Monolithic implementation

Analysis

Returns

> Returning a value from the extracted method

> Wrapping the extracted method’s invocation in the source method in a return
statement

Analysis

Returns

ExampleClass >> foo: aString

/ N self extractedMethod: aString

ExampleClass >> extractedMethod: aString

ExampleClass >> foo: aString

A self validate: aString

A self validate: aString

Analysis

Assignments

ExampleClass >> foo
| a

a = self extractedMethod.
N self validate: a

ExampleClass >> foo

| a|
a: =3+ ((2sart-4)-(4 + 2 sqrt).
A self validate: a ExampleClass >> extractedMethod

| a]
a:=3+(2sqrt-4)-4 + 2 sqrt)
N\ a

Analysis

Multiple assignments

ExampleClass >> foo

b := self bar: a.

c := self baz: b.

d := self doSomething.
N self validate: ¢ and: d

ExampleClass >> foo
lbcd]
b := self extractedMethod.
c .= self baz: b.
d .= self doSomething.
N self validate: c and: d

ExampleClass >> extractedMethod
|ab|
a = 3.
b := self bar: a.
NDb

10

Simplifications

Returns & Multiple assignments

> The extracted method can always return

> Add a return in the sender (source method) only if the last statement of the
selection is the return statement

> Multiple assignments can be extracted only if at most one of the variables is
used after the selection in the source method

11

Analysis

Non-local returning blocks

ExampleClass >> foo

c|

c ifOdd: [A true |.

N self validate: ¢

12

Simplification

Non-local returning blocks

> Has single exit point

13

New architecture

> Prepare for execution
»Calculate temporaries
»Determine which assignment variables are used after the selection
>|dentify arguments for the extracted method
»Determine if the source method needs to return the extracted method

> Precondition checking
»Parse tree and selected code can be parsed
»Selection is valid and extractable
»Temporaries or assignments shouldn’t be read before written
»Subtree has at maximum one assignment
»Subtree has a single exit point

» Transformation
»Create source for the extracted method
»Search for method with equivalent parse tree
»Create a message send to the extracted or found method
»Perform transformations

14

Transformation-based Refactorings: a First Analysis

N. Anquetil’, M. Campero’, Stéphane Ducasse’,].-P. Sandoval Alcocer? and
P. Tesone!

"Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189 - CRIStAL, F-59000 Lille, France
2Pontiﬁcia Universidad Catolica de Chile, Santiago, Chile

Abstract

Refactorings are behavior preserving transformations. Little work exists on the analysis of their imple-
mentation and in particular how refactorings could be composed from smaller, reusable, parts (being
simple transformations or other refactorings) and how (non behavior preserving) transformations could
be used in isolation or to compose new refactoring operators. In this article we study the seminal imple-
mentation and evolution of Refactorings as proposed in the PhD of D. Roberts. Such an implementation
is available as the Refactoring Browser package in Pharo. In particular we focus on the possibilities to
reuse transformations independently from the behavior preserving aspect of a refactoring. The long
term question we want to answer is: Is it possible to have more atomic transformations and refactorings
composed out of such transformations? We study pre-conditions of existing refactorings and identify
several families. We identify missed opportunities of reuse in the case of implicit composite refactorings.
We analyze the refactorings that are explicitly composed out of other refactorings to understand whether
the composition could be expressed at another level of abstraction. This analysis should be the basis
for a more systematic expression of composable refactorings as well as the reuse of logic between
transformations and refactorings.

1. Introduction

Refactorings are behavior preserving code transformations. The seminal work of Opdyke
[Opd92] and the Refactorings Browser (first implementation of Refactorings of Roberts and
Brant [RBJO96, RBJ97, BR98]) paved the way to the spread of refactorings [FBB*99]. They are
now a must-have standard in modern IDEs [MHPB11, NCV 13, VCN" 12, VCM 13, GDMH12].
A lot of research has been performed on refactorings such as for their detection [TME 18],
missed application opportunities [TC09, TC10], practitioner use [MHPB11, VCN ' 12, NCV *13,
VCM™13], or atomic refactorings for live environments [TPF ' 18]. Several publications focus
on scripting refactorings [VEdMO06, LT12, SvP12, HKV12, KBD15]. Finally, some work tried to
speed up refactoring engines, proposing alternatives to the slow and bogus Java refactoring
engine [KBDA16]. Related to this, it should be noted that the Pharo Refactoring Browser
architecture supports fast pre-condition validation and refactoring execution and does not suffer
from the architecture problems reported by Kim et al. [KBDA16].

IWST’22: International Conference of Smalltalk Technologies, August 24-26, 2022, Novy Sad, Serbia

Q nicolas.anquetil@inria.fr (N. Anquetil); stephane.ducasse@inria.fr (S. Ducasse);
juanpablo.sandoval@ing.puc.cl (J.-P.S. Alcocer); pablo.tesone@inria.fr (P. Tesone)

® 0000-0002-5615-6691 (N. Anquetil); 0000-0001-6070-6599 (S. Ducasse); 0000-0002-8335-4351 (J.-P. S. Alcocer);
0000-0002-5615-6691 (P. Tesone)

@ 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR Workshop Proceedings (CEUR-WS.org)

15

Journal of Computer Languages 80 (2024) 101273

SRR
r" R

¥

EI SEVIER

Contents lists available at ScienceDirect =

nmax COMPUTER
LANGUARGES

Journal of Computer Languages

journal homepage: www.elsevier.com/locate/cola -
A new architecture reconciling refactorings and transformations s

Bal$a Sarenac **, Nicolas Anquetil *, Stéphane Ducasse ®, Pablo Tesone "

& University of Novi Sad, Faculty of Technical Sciences, Trg Dositeja Obradoviéa 6, 21102 Novi Sad, Serbia
® University Lille, Inria, CNRS, Centrale Lille, UMR 9189 - CRIStAL, F-59000 Lille, France

ARTICLE INFO

Keywords:
Refactorings
Transformations
Preconditions

Source code transformation

Behavior preservation

ABSTRACT

Refactorings are behavior-preserving code transformations. They are a recommended software development
practice and are now a standard feature in modern IDEs. There are however many situations where developers
need to perform mere transformations (non-behavior-preserving) or to mix refactorings and transformations.
Little work exists on the analysis of transformations implementation, how refactorings could be composed of
smaller, reusable, parts (simple transformations or other refactorings), and, conversely, how transformations
could be reused in isolation or to compose new refactorings. In a previous article, we started to analyze the
seminal implementation of refactorings as proposed in the Ph.D. of D. Roberts, and whose evolution is available
in the Pharo IDE. We identified a dichotomy between the class hierarchy of refactorings (56 classes) and that of
transformations (70 classes). We also noted that there are different kinds of preconditions for different purposes
(applicability preconditions or behavior-preserving preconditions). In this article, we go further by proposing
a new architecture that: (i) supports two important scenarios (interactive use or scripting, ie., batch use); (ii)
defines a clear API unifying refactorings and transformations; (iii) expresses refactorings as decorators over
transformations, and; (iv) formalizes the uses of the different kinds of preconditions, thus supporting better
user feedback. We are in the process of migrating the existing Pharo refactorings to this new architecture.
Current results show that elementary transformations such as the Aop Merxop transformation is reused in 24
refactorings and 11 other transformations; and the Remove MerHop transformation is reused in 11 refactorings
and 7 other transformations.

1. Introduction

Refactorings are behavior-preserving code transformations. The sem-
inal work of Opdyke [1] and the Refactorings Browser (the first
implementation of refactorings by Roberts and Brant [2-5]) paved
the way to the spread of refactorings [6]. They are now a standard
feature in modern IDEs [7-11]. A lot of research has been done
on refactorings such as for their detection [12], missed application
opportunities [13,14], practitioner use [7-10], their definition [15-19],
or atomic refactorings for live environments [20]. Several publica-
tions focus on scripting refactorings [21-25]. Finally, some work has
attempted to speed up existing refactoring engines, as for Java [26].

Still, from a daily development perspective, refactorings and their
behavior-preserving forms are not enough [15,27,28]. Non-behavior-
preserving code transformations are also needed [18,19,29]. For ex-
ample, consider replacing all the invocations of a given message with
another one (which we call RerLacEMEssaceSEnp(msg1,msg2)). Re-
PLACEMESSAGESEND is not equivalent to RenameMETHOD: the former requires

* Corresponding author.

msg2 to exist, whereas the latter does not require it to exist. Also,
the former (RepLacEMEssaceSEnp) does not need to deal with possible
overriding implementations of msg1 whereas the refactoring must
rename them too.

RerLaceMEssaceSEND should just update all the msg1 invocations to
msg2 invocations. Such a transformation will typically not preserve
behavior, yet it is a need that arises in real development situations. It
is clear that RepLacEMEssaGESEND has similarities with the RenaMEMETHOD
refactoring, but it would be awkward’ to perform it by applying Re-
NaMEMETHOD only. When in need of such a source code transformation,
a developer is left to perform the changes manually or with a code
rewriting engine that can be cumbersome to use [28].

Defining some specific code transformations such as RepLAcEMESSAGE-
Senp and letting the Pharo developers define their own transformations
are our long-term engineering goals. In this paper, we explore a new
refactoring engine architecture to do so. Note that our goal is not

E-mail addresses: balsasarenac@uns.ac.rs (B. Sarenac), nicolas.anquetil@inria.fr (N. Anquetil), stephane.ducasse@inria.fr (S. Ducasse), pablo.tesone@inria.fr

(P. Tesone).

! The developer would need to copy msg2 in a paste buffer; then remove it before executing the rename refactoring; then rename manually (without refactoring)
msg2 back into msg1; and finally, paste back the copied method to its original definition!

https://doi.org/10.1016/j.cola.2024.101273

Received 14 November 2023; Received in revised form 23 April 2024; Accepted 13 May 2024

Available online 31 May 2024

2590-1184/© 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, Al training, and similar technologies.

Results

O OO 1 ON Ul o W DN =

ek ek ek ek b e e ped ped e
O OO0 ~J ON U1 v WO DN = O

ReCompositeExtractMethodRefactoring >> buildTransformationFor: newMethodName

A OrderedCollection new
add: (RBAddMethodTransformation
model: self model
sourceCode: newMethod newSource
in: class
withProtocol: Protocol unclassified);
add: (RBReplaceSubtreeTransformation
model: self model
replace: sourceCode
to: (self messageSendwith: newMethodName)
inMethod: selector
inClass: class);
add: (ReRemoveUnusedTemporaryVariableRefactoring
model: self model
inMethod: selector
inClass: class name) ;
yourself

17

Extract SetUp Method

Examplelest >> testM
| a
a := ComplexObiject new.
a doSomething
self assert: a size equals: 4
ExampleTest >> testN
| a|
a := ComplexObject new.
a doSomething.

self assertEmpty: a

18

ExampleTest >> setUp
super setUp.
a := ComplexQObject new.

a doSomething

ExampleTest >> testM
self assert: a size equals: 4
ExampleTlest >> testN

self assertEmpty: a

O OO0 I ON U v W DN =

DN DO DN DO DD DD = = e e e e e e e
NN U A O RO 000NN RO

ReCompositeSetUpMethodRefactoring >> buildTransformationFor: newMethodName

A OrderedCollection new
add: (RBAddMethodTransformation
model: self model
sourceCode: newMethod newSource
in: class
withProtocol: (Protocol named: #running)) ;
add: (ReAddSuperSendAsFirstStatementTransformation
model: self model
methodTree: newMethod
inClass: class);
addAll: (assignments collect: [:var | RBTemporaryToInstanceVariableRefactoring
model: self model
class: class
selector: selector
variable: var]);
add: (RBRemoveSubtreeTransformation
model: self model
remove: sourceCode
fromMethod: selector
inClass: class);
add: (ReRemoveUnusedTemporaryVariableRefactoring
model: self model
inMethod: selector
inClass: class name) ;
yourself

Extract With Pragma

ExampleClass >> m
<var: ‘c’ declareC: ‘int’>

¢

ExampleClass >> m
c := self extractedMethod.

<var: ‘c’ declareC: ‘int’> i} |
N ¢ * self calculation

c| ExampleClass >> extractedMethod
c:=1+3. <var: ‘c’ declareC: ‘int’>
A ¢ * self calculation c|

c:=1+3.

20

ReCompositeExtractMethodwithPragmasRefactoring >> buildTransformationFor: newMethodName

| messageSend |
messageSend := self messageSendwWith: newMethodName.
A OrderedCollection new

O O ~J ON Ul v WO DN =

DO DN DO DN DD NN = =t ek ek ek ek ek ek el
NN T ON U Wb N = O N0 OO ONT N = O

add: (RBAddMethodTransformation
model: self model
sourceCode: newMethod newSource
in: class
withProtocol: Protocol unclassified);
add: (RBReplaceSubtreeTransformation
model: self model
replace: sourceCode
to: messageSend
inMethod: selector
inClass: class);
addAll: (pragmasToExtract collect: [:p |
ReAddPragmaTransformation
model: self model
addPragma: p
inMethod: newMethod
inClass: class]);
add: (ReRemoveUnusedTemporaryVariableRefactoring
model: self model
inMethod: selector
inClass: class name) ;
yourself

21

Conclusion

* Challenges when implementing the Extract Method in Pharo
* | everage composition to create Extract Method
 [wo use cases of domain specific refactorings:

* Extract SetUp Method

* Extract with Pragma

22

