


Mariano Martinez Peck
Team Lead & Sr. Software Engineer

mpeck@instantiations.com

@MartinezPeck

/in/mariano-martinez-peck

Behind the Scenes:
The Making of VAST



◦ VAST Platform Overview
◦ Coding
◦ Testing
◦ Building
◦ Documenting
◦ Conclusion
◦ Q&A

Agenda



VAST Platform Overview



VAST Platform Components
◦ Smalltalk 
◦ Virtual Machine (VM)
◦ Internal tests
◦ Many build scripts
◦ Installers
◦ Documentation
◦ Migration Guide
◦ Other supplementary materials…



Smalltalk
◦ Base Smalltalk language implementation
◦ Additional libraries and frameworks
◦ Integrated development environment (IDE)
◦ Graphical user interface (GUI)
◦ Version control system 
◦ Tools



Smalltalk – Some Numbers
◦ Number of Applications ~= 1,400
◦ Number of Classes ~= 13,000
◦ Number of Methods ~= 213,000
◦ Lines of Code ~= 1,150,000



Virtual Machine (VM)
◦ Interpreter
◦ Memory manager & GC
◦ JIT and PIC
◦ Unicode support
◦ OsProcess
◦ And many other parts! 



Virtual Machine (VM) – Some Numbers
◦ Lines of Code = 212,323



Internal Tests – Some Numbers
◦ ~= 19,600 unit tests
◦ ~= 162,000 lines of code

…and even more tests I’ll mention later!



1.5 million lines of code just for Smalltalk, the VM, and unit tests!



Coding



Method Visibility: Private vs. Public
◦ Important consideration to create an 

easy upgrade path for customers. 
(Avoid or minimize “public” method 
changes.)

◦ When changes do occur to “public” 
methods, they are included in our 
Migration Guide.

◦ Balance changes to “public” methods 
between necessary evolution and 
business reality.



Code Formatting
◦ Unified formatting layout

 
◦ We stick to the default format

◦ Be able to compare each others 
code and see not formatting 
difference



Method Comments
◦ At least, for public methods

◦ They include a brief description, 
arguments, answer, exception 
raised, examples, etc. 

Bonus: 
Create tests that run the 
examples located in the 
comments!



App/Class Comments
◦ Comments in methods are great, but its 

hard to give the bigger picture.

◦ Application comments give a sense of the 
cohesive properties that led all the classes 
to be grouped together. 

◦ Class comments should describe the 
object's purpose and any other interesting 
details.

Bonus: 
Create tests that run the examples 
located in the comments!



Method Categories/Protocols
◦ Every method belongs to a category

◦ Methods can be in more than one category



Lint Checking
◦ Lint rules are run 

against the code

◦ Improve code quality



Coverage Analysis
◦ We use the coverage analysis tool.

◦ Builds confidence that you have 
developed working code.

◦ Gives a possible measure of how 
effective your test suite is.

◦ If code didn't get exercised...
it should be assumed that it's broken!



Performance Profiling
◦ We use the Performance 

profiler

◦ VAST should be as 
efficient as possible



Testing



Multiple Types of Tests
◦ Extensive Smalltalk SUnit test suite 

◦ VM tests

◦ IVT (Installation Verification Tests)

◦ Manual/regression tests



Multiple Platforms
◦ Operating Systems

◦ Windows & Linux

◦ CPU Architectures
◦ Intel x86, Intel x64, ARMv7 (32bit) and ARMv8 (64bit)

◦ Screen Depth
◦ HiDPI vs Non HiDPI
◦ Multiple scaling factors

◦ Linux Variations
◦ Installers: deb, rpm
◦ Types: desktop, server
◦ GUI: KDE, Gnome, etc.

◦ Windows Variations
◦ desktop, server



Multiple VAST Installers Options
◦ Client

◦ Manager

◦ Standalone



Multiple VAST Images Types
◦ Full image

◦ Base image 



So Many Testing Combinations!
◦ Multiple Types of Tests

◦ Multiple Platforms

◦ Multiple VAST Installer Options

◦ Multiple VAST Image Types



Building



Making a VAST Build
◦ Building

◦ All the Smalltalk images
◦ VAST Installers
◦ Runtime support files

◦ Automated Testing
◦ IVT tests
◦ SUnit tests

◦ Benchmarking
◦ Performance benchmarks
◦ Comparisons with previous builds



Documenting



All versions documented! 



Documentation auto-generated from comments!



Migration Guide
Use it to upgrade from:

IBM VisualAge 3.0 (released in 1995) 
to latest available VAST Platform!



Conclusion



Why does all this matter?
◦ Software doesn’t live in isolation. It MUST move forward to effectively 

evolve alongside all the systems and platforms that surround it.

◦ This presentation outlined the foundation of what we call “responsible 
evolution”, which will continue to be the core engineering priority for VAST.

◦ “Responsible evolution” has allowed our customers to keep pace with the 
inevitable changes of technology, while also being able to count on the 
stability of a commercial Smalltalk system like the VAST Platform.



Contact
General Inquiry

info@instantiations.com

Sales
sales@instantiations.com

North America, Toll Free
855 476 2558

International
+1 503 263 0058

VAST Support Portal
vast-support.instantiations.com

© Instantiations, Inc. All rights reserved. 'Instantiations' and the 'intersecting circle design’ 
are registered trademarks of Instantiations, Inc. in the United States. All product names, trademarks, 

and registered trademarks are property of their respective owners. Company, product, and service names not owned by 
Instantiations are used for identification purposes only. Use of these names, trademarks, and brands does not imply endorsement.

Questions?
Thanks for attending!

Mariano Martinez Peck
Team Lead & Sr. Software Engineer

mpeck@instantiations.com

@MartinezPeck

/in/mariano-martinez-peck


