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The Making of VAST
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VAST Platform Overview



VAST Platform Components
◦ Smalltalk 
◦ Virtual Machine (VM)
◦ Internal tests
◦ Many build scripts
◦ Installers
◦ Documentation
◦ Migration Guide
◦ Other supplementary materials…



Smalltalk
◦ Base Smalltalk language implementation
◦ Additional libraries and frameworks
◦ Integrated development environment (IDE)
◦ Graphical user interface (GUI)
◦ Version control system 
◦ Tools



Smalltalk – Some Numbers
◦ Number of Applications ~= 1,400
◦ Number of Classes ~= 13,000
◦ Number of Methods ~= 213,000
◦ Lines of Code ~= 1,150,000



Virtual Machine (VM)
◦ Interpreter
◦ Memory manager & GC
◦ JIT and PIC
◦ Unicode support
◦ OsProcess
◦ And many other parts! 



Virtual Machine (VM) – Some Numbers
◦ Lines of Code = 212,323



Internal Tests – Some Numbers
◦ ~= 19,600 unit tests
◦ ~= 162,000 lines of code

…and even more tests I’ll mention later!



1.5 million lines of code just for Smalltalk, the VM, and unit tests!



Coding



Method Visibility: Private vs. Public
◦ Important consideration to create an 

easy upgrade path for customers. 
(Avoid or minimize “public” method 
changes.)

◦ When changes do occur to “public” 
methods, they are included in our 
Migration Guide.

◦ Balance changes to “public” methods 
between necessary evolution and 
business reality.



Code Formatting
◦ Unified formatting layout

 
◦ We stick to the default format

◦ Be able to compare each others 
code and see not formatting 
difference



Method Comments
◦ At least, for public methods

◦ They include a brief description, 
arguments, answer, exception 
raised, examples, etc. 

Bonus: 
Create tests that run the 
examples located in the 
comments!



App/Class Comments
◦ Comments in methods are great, but its 

hard to give the bigger picture.

◦ Application comments give a sense of the 
cohesive properties that led all the classes 
to be grouped together. 

◦ Class comments should describe the 
object's purpose and any other interesting 
details.

Bonus: 
Create tests that run the examples 
located in the comments!



Method Categories/Protocols
◦ Every method belongs to a category

◦ Methods can be in more than one category



Lint Checking
◦ Lint rules are run 

against the code

◦ Improve code quality



Coverage Analysis
◦ We use the coverage analysis tool.

◦ Builds confidence that you have 
developed working code.

◦ Gives a possible measure of how 
effective your test suite is.

◦ If code didn't get exercised...
it should be assumed that it's broken!



Performance Profiling
◦ We use the Performance 

profiler

◦ VAST should be as 
efficient as possible



Testing



Multiple Types of Tests
◦ Extensive Smalltalk SUnit test suite 

◦ VM tests

◦ IVT (Installation Verification Tests)

◦ Manual/regression tests



Multiple Platforms
◦ Operating Systems

◦ Windows & Linux

◦ CPU Architectures
◦ Intel x86, Intel x64, ARMv7 (32bit) and ARMv8 (64bit)

◦ Screen Depth
◦ HiDPI vs Non HiDPI
◦ Multiple scaling factors

◦ Linux Variations
◦ Installers: deb, rpm
◦ Types: desktop, server
◦ GUI: KDE, Gnome, etc.

◦ Windows Variations
◦ desktop, server



Multiple VAST Installers Options
◦ Client

◦ Manager

◦ Standalone



Multiple VAST Images Types
◦ Full image

◦ Base image 



So Many Testing Combinations!
◦ Multiple Types of Tests

◦ Multiple Platforms

◦ Multiple VAST Installer Options

◦ Multiple VAST Image Types



Building



Making a VAST Build
◦ Building

◦ All the Smalltalk images
◦ VAST Installers
◦ Runtime support files

◦ Automated Testing
◦ IVT tests
◦ SUnit tests

◦ Benchmarking
◦ Performance benchmarks
◦ Comparisons with previous builds



Documenting



All versions documented! 



Documentation auto-generated from comments!



Migration Guide
Use it to upgrade from:

IBM VisualAge 3.0 (released in 1995) 
to latest available VAST Platform!



Conclusion



Why does all this matter?
◦ Software doesn’t live in isolation. It MUST move forward to effectively 

evolve alongside all the systems and platforms that surround it.

◦ This presentation outlined the foundation of what we call “responsible 
evolution”, which will continue to be the core engineering priority for VAST.

◦ “Responsible evolution” has allowed our customers to keep pace with the 
inevitable changes of technology, while also being able to count on the 
stability of a commercial Smalltalk system like the VAST Platform.



Contact
General Inquiry

info@instantiations.com

Sales
sales@instantiations.com

North America, Toll Free
855 476 2558

International
+1 503 263 0058

VAST Support Portal
vast-support.instantiations.com
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