=~ Debug Points
Breakpoints, but better!

Steven Costiou

(® Vocabulary

e Breakpoints
* [he tool to interrupt executions

(® Vocabulary

e Breakpoints
* [he tool to interrupt executions

¢ Debug Points
* A framework to implement breakpoints

(Debug points

® Breakpoints become...

e Configurable
e Composable

o Extensible

(if you need...)

(Debug points

® Breakpoints become...

o Configurable m———

e Composable

Better user
experience

o Extensible

(if you need...)

(Debug points

® Breakpoints become...
Better user

* Configurable =y
@ Composable ﬁ More precision

o Extensible

(if you need...)

(Debug points

® Breakpoints become...
Better user

* Configurable =y
@ Composable ﬁ More precision
 Extensible ﬁDomslrre;Sk%%ci;:’g

(if you need...)

(Debug points

(©) ReflectivityExa x ? Col

methodWithClassVaraA«
classVar := 5.
classVar := 6.
classvVar > 5 ifTi

(Debug points

(©) ReflectivityExa

methodWithClassVaraA«
classvVar := 5.
classVar := 6.
classVar > 5 ifTi

(Debug points

methodWithClassVarAc), poit
classVar } Do & printit
classVar := 6. |&y Do&inspectit
classVar > 5 ifTi =i Do & browse its class
¢+~ Do & basic inspect it
&« Debug it

atP
#I
3tB

{r 38l
3D

® “mwmwﬁ“"
() Add Breakpoint to: :=
rA

Add Breakpoint to: :=and configure it
[S Add Watch to: :=

(Debug points

() Add Breakpoint to: :=

© ReflectivityExa (N@Source code SR moth .
methodwithClassVarAcy, poit s2p % Add Breakpoint to: :=and configure it

classVar } Do & print it s2p [$ Add Watch to: =
classVar := 6. |&y Do&inspectit Y
classvVar > 5 ‘ilegDo&browseitsclass #£B

¢s~ Do & basic inspect it 3l

§¥ Debug it 138D

(Debug points

" Source code S8t

- () Add Breakpoint to: :=

(©) ReflectivityExa

methodwithClassVarAc), poit s¢p & Add Breakpoingto: :-and configure
classVar := 5. ||p Do&printit s2p [S Add Watch to:/=
classVar := 6. s~ Do & inspect it %
classVar > 5 ifTi =i Do & browse its class 3B
¢+~ Do & basic inspect it {31
§« Debug it #D

(Debug points

methodWithClassVarAc), poit s¢p o Add Breakpoingto: :-and configure
classVar := 5. ||p Do&printit s2p [S Add Watch to:/=
classVar := 6. s~ Do & inspect it 3£
classvVar > 5 1le|§%Do&browseitsclass %R
¢+~ Do & basic inspect it {3l
§« Debug it {+3D

methodWithClassVarAccess
7 0 classVar := 5.
classVar := 6.
classVar > 5 ifTrue:m" classVar raisedTo: 2]

Configuration

(©) ReflectivityExa x ? Comment x ¥ methodWithCl x

_Llle]:mﬂithCIassVarAccess
ORemove ar *:= 6.
classvVar > 5 ifTrue:m" classVar raisedTo: 2]

(© Configuration

(€) ReflectivityExa x ? Comment

) Remove ar := 6.

classvVar > 5 ifTrue:m" classVar raisedTo: 2]

a m m
2 Gonfiguration
3 u
x = [] Debug Point Browser v
| (De)activate all Search by name
Type Target Name Scope C X

Watchpoint ReflectivityExamples2>>#methoc WatchPoint class ReflectivityExamples2 = Refresh Remove
Breakpoint ReflectivityExamples2>>#methoc Breakpoint class ReflectivityExamples2

: . - enabled: (de)activates debug point
Breakpoint ReflectivityExamples2>>#methoc Breakpoint class ReflectivityExamples2

| Condition: Hit when the condition evaluates to true

__| Test Environment Only: Hits only when executing tests

(€) ReflectivityExa x ? Comment] methodWithCl x

__| Chain: Each debug point is hit once in sequential order

__ngj'.hgdﬂj;haass\slla rA __| Counter: Tracks how many times the debug point was reached
(Breakpoint | .- :- 5. . . .
@ Remove ar = 6. __| Once: Deactivates debug point after one hit
classvar > 5 ifTrue :Iﬂ" classVar raisedTo: 2] | Script: Executes a script at each hit
: | Transcript: Logs to transcript at each hit
methodWithClassVarAccess Break

classVar := 5.
classVar := 6.
4 classVar > 5 ifTrue:[* classVar raisedTo: 2]

W) ND —

Search by name

Type Target Name Scope
v| Watchpoint ReflectivityExamples2>>#methoc WatchPoint class ReflectivityExamples2

7] Breakpoint ReflectivityExamples2>>#methoc Breakpoint

| Breakpoint ReflectivityExamples2>>#methoc Breakpoint class ReflectivityExamples2

methodWithClassVarAccess

> classvar := 5.
3 classVar := 6.
4 classVar > 5 ifTrue:[* classVar raisedTo: 2]

x = []

Debug Point Browser

(De)activate all

Search by name

Type

Watchpoint

Breakpoint

Breakpoint

Target Name Scope

ReflectivityExamples2>>#methoc WatchPoint class ReflectivityExamples2
ReflectivityExamples2>>#methoc Breakpoint class ReflectivityExamples2
ReflectivityExamples2>>#methoc Breakpoint class ReflectivityExamples2

General information

methodWithClassVarAccess
classVar := 5.
classVar := 6.
classVar > 5 ifTrue:[* classVar raisedTo: 2]

Cc X

Refresh Remove

v

enabled: (de)activates debug point

Condition: Hit when the condition evaluates to true

Test Environment Only: Hits only when executing tests

Chain: Each debug point is hit once in sequential order
Counter: Tracks how many times the debug point was reached
Once: Deactivates debug point after one hit

Script: Executes a script at each hit

Transcript: Logs to transcript at each hit

Break

x = O Debug Point Browser v

(De)activate all Search by name

Type Target Name Scope C %

Watchpoint ReflectivityExamples2>>#methoc WatchPoint class ReflectivityExamples2 | Refresh Remove

Breakpoint ReflectivityExamples2>>#methoc Breakpoint class ReflectivityExamples2

| enabled: (de)activates debug point

Breakpoint ReflectivityExamples2>>#methoc Breakpoint class ReflectivityExamples2

Condition: Hit when the condition evaluates to true

Test Environment Only: Hits only when executing tests

G e n e ral i n fO rm at i O n Chain: Each debug point is hit once in sequential order

Counter: Tracks how many times the debug point was reached

Once: Deactivates debug point after one hit

Script: Executes a script at each hit

Transcript: Logs to transcript at each hit
Break

methodWithClassVarAccess
classVar := 5.

classvVar := 6.
classVar > 5 ifTrue:[* classVar raisedTo: 2]

Source code

x = O Debug Point Browser v

(De)activate all Search by name

Type Target Name Scope C %
Watchpoint ReflectivityExamples2>>#methoc WatchPoint class ReflectivityExamples2 | Refresh Remove
IBreakpoint ReflectivityExamples2>>#methoc Breakpoint class ReflectivityExamples2

| enabled: (de)activates debug point

Breakpoint ReflectivityExamples2>>#methoc Breakpoint class ReflectivityExamples2

Condition: Hit when the condition evaluates to true

Test Environment Only: Hits only when executing tests

G e n e ral i n fO rm at i O n Chain: Each debug point is hit once in sequential order

Counter: Tracks how many times the debug point was reached

Once: Deactivates debug point after one hit

Script: Executes a script at each hit

Transcript: Logs to transcript at each hit
Break

methodWithClassVarAccess
classVar := 5.

classvVar := 6.
classVar > 5 ifTrue:[* classVar raisedTo: 2]

Source code

x = O Debug Point Browser v

(De)activate all Search by name

Type Target Name Scope C X
Watchpoint ReflectivityExamples2>>#methoc WatchPoint class ReflectivityExamples2

Refresh Remove

| enabled: (de)activates debug point

¥
CO n't rOI Breakpoint ReflectivityExamples2>>#methoc Breakpoint class ReflectivityExamples2
%

Breakpoint ReflectivityExamples2>>#methoc Breakpoint class ReflectivityExamples2

Condition: Hit when the condition evaluates to true

Test Environment Only: Hits only when executing tests

G e n e ral i n fO rm at i O n Chain: Each debug point is hit once in sequential order

Counter: Tracks how many times the debug point was reached

Once: Deactivates debug point after one hit

Script: Executes a script at each hit

Transcript: Logs to transcript at each hit
Break

methodWithClassVarAccess
classVar := 5.

classvVar := 6.
classVar > 5 ifTrue:[* classVar raisedTo: 2]

Configuration

Source code

£ Composition

methodWithClassVarAccess

Breakpoint behaviors \, 1
classvar := 5.

classvVar := 6.

R
2
3
4 classVar > 5 ifTrue:[* classVar raisedTo: 2]

| Once: [
.; ec . "€

Composition

nt Browser v | x = [0 Transcript
X E
B rea k p O i n t b e h aV i O rS \}: enabled: (de)activates debug point 6

e __| Condition: Hit when the condition evaluates to true

__| Test Environment Only: Hits only when executing tests

Chain: Each debug point is hit once in sequential order

| Counter: Tracks how many times the debug point was reached

Current Count: 4

. methodwithClassVarAccess

Once: Deactivates debug point after one hit
2 classvar := 5.

Script: Executes a script at each hit
classVar\:= 6. -)) ;
4 classVar 5 ifTrue:[* classVar raisedTo: 2] Transcript: Logs to transcript at each hit
classVar.

contextual access

Composition

nt Browser

X

C
. Refresh Remove
B re a k p O i n t b e h aV i O rS ‘ enabled: (de)activates debug point
e __| Condition: Hit when the condition evaluates to true
__| Test Environment Only: Hits only when executing tests
__| Chain: Each debug point is hit once in sequential order
Counter: Tracks how many times the debug point was reached

Current Count: 4

- methodWithClassVarAccess __| Once: Deactivates debug point after one hit
: classVar := 5. "] Script: Executes a script at each hit

' classVar\:= 6.)) i

4 classVar AS 1ifTrue:[* classVar raisedTo: 2] Transcript: Logs to transcript at each hit

classVar.

contextual access

x = [0 Transcript v
6 .-
6
6
6

v

Object-centric breakpoints

Name Scope #

Breakpoint SindarinDebuggerTest>>#testTer Breakpoint class Sind:

Breakpoint #testObjectPoint => InstanceVari: var_testObjobj Sindar
' SindarinDebuggerTest>>#testSte hlue class Sindiv

testStepToMethodEntry
| dbg |

dbg :

(DEMOS

(DEMOS

methodWithRandomValueAccess

(1 to: 10) atRandom < 5 ifTrue: [value := 10 atRandom].
value crTrace

(DEMOS

methodWithRandomValueAccess

(1 to: 10) atRandom < 5 1ifTrue: [:= 10 atRandom].

value crTrace

C DEMOS

methodWithRandomValueAccess

(1 to: 10) atRandom < 5 ifTrue: [:= 10 atRandom].

value crTrace

when does ‘value’
variable change?

C DEMOS

and what Is the

value?
methodWithRandomValueAccess

(1 to: 10) atRandom < 5 ifTrue: [:= 10 atRandom].

value crTrace

when does ‘value’
variable change?

C DEMOS

and what Is the

value? | only want to know
methodWithRandomValueAccess Wh en ‘Va|U es > 7

(1 to: 10) atRandom < 5 ifTrue: [:= 10 atRandom].

value crTrace

when does ‘value’
variable change?

(DEMOS

when are we \ V
arriving in m4 from ma37 @

(DEMOS

N\
@ break here

m) (2

when are we \ V
arriving in m4 from ma37 @

(® DEMOS

A\\

N\
@ break here

m) (w2

step...

when are we \ V
arriving in m4 from ma37 @

(C DEMOS

N\
@ break here

m) (w2

step...

when are we \| V
arriving in m4 from ma37 @ or break here

(DEMOS
™ o

however other paths

can go through ma3!

me

however other paths
can go through ma3!

| only want
this path!

@ however other paths
can go through m3!

| only want
this path!

break here

only if break

Q here first/@

however other paths
can go through ma3!

e

| only want
this path!

break here

(Building breakpoints

e Why?
* Recurring needs

* Problem or domain specific needs
* New debugging tools (transfering research)

(Building breakpoints

e Why?
* Recurring needs

* Problem or domain specific needs
* New debugging tools (transfering research)

e How?
 Subclass and specializes the breakpoint model

* Subclass and specializes the breakpoint behavioral
model

* Build presenters for automatic tool integration

(Simplified model

DebugPoint

BreakPoint

JaN

WatchPoint

DebugPointBehavior
JAN
Script
Log

Count

types of
breakpoint

C Simplified model

DebugPoint

BreakPoint

JaN

WatchPoint

DebugPointBehavior
JAN
Script
Log

Count

types of
breakpoint

C Simplified model

DebugPoint <> DebugPointBehavior

BreakPoint

JaN

WatchPoint

JaN

Script

Log

what any breakpoint can do

A\ 2

C Simplified model

DebugPoint DebugPointBehavior
JAN
BreakPoint Script
types of
S —
b reaprl Nt WatchPoint Log
bl "¢¢ """"
Fommmmmmme L .-

i 0 .
; Spec presenters '

what any breakpoint can do

(2 DEMO: building a replay point

methodWithCondition

value := (1 to: 10) atRandom < 5
ifTrue: [self trueValue]
ifFalse: [self falseValue].
value crTrace

(® DEMO: building a replay point

| want to control the

value of the condition

to deterministically choose
methodWithCondition which branch to execute

value := (1 to: 10) atRandom < 5
ifTrue: [self trueValue]
ifFalse: [self falseValue].
value crTrace

(2 DEMO: building a replay point

operation
methodWithCondition

value := |(1 to: 10) atRandom < 5
ifTrue: [self trueValue]
ifFalse: [self falseValue].
value crTrace

(2 DEMO: building a replay point

replay
point

operation
methodWithCondition

value := |(1 to: 10) atRandom < 5
ifTrue: [self trueValue]
ifFalse: [self falseValue].
value crTrace

(2 DEMO: building a replay point
point

* replace the operation
by a custom value

operation

methodWithCondition

value := |(1 to: 10) atRandom < 5
ifTrue: [self trueValue]
ifFalse: [self falseValue].
value crTrace

(2 DEMO: building a replay point
point

* replace the operation
by a custom value

operation

methodWithCondition

value := |(1 to: 10) atRandom < 5

ifTrue: [self truevalue] *
ifFalse: [self falsevalue].

value crTrace

Inject the value into
the conditional

(® DEMO: building a replay point

BreakPoint

DebugPoint

— DebugPointBehavior

AN

WatchPoint

ReplayPoint

JaN

Script

Log

Count

(Status

¢ Integrated into Pharo 12

* Replaces the breakpoint implementation
 Works (it should...)

(Status

¢ Integrated into Pharo 12

* Replaces the breakpoint implementation
 Works (it should...)

e What’s next?

* Model improvements
e GUI improvements
* Archive and remove the old breakpoint model

(® Acknowledgments

e Main developers
e Max Zurbriggen (UHZ) — original idea and implementation
e Adrien Vanegue (Inria) — Pharo implementation and integration
e Steven Costiou (Inria) — design and integration

(@ Acknowledgments

e Main developers
e Max Zurbriggen (UHZ) — original idea and implementation
e Adrien Vanegue (Inria) — Pharo implementation and integration
e Steven Costiou (Inria) — design and integration

® Supervision
* Marcus Denker (Inria)

e Steven Costiou (Inria)
* Alberto Bacchelli (UZH)

- Search by name

Type Target Name Scope
| Watchpoint ReflectivityExamples2>>#methoc WatchPoint class ReflectivityExamples2

7] Breakpoint ReflectivityExamples2>>#methoc Breakpoint

| Breakpoint ReflectivityExamples2>>#methoc Breakpoint class ReflectivityExamples2

methodWithClassVarAccess

> classvar := 5.
3 classVar := 6.
4 classVar > 5 ifTrue:[* classVar raisedTo: 2]

Thank you!

