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methodWithClassVarAc ), poit s¢p o Add Breakpoingto: :-and configure
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methodWithClassVarAccess
7 0 classVar := 5.
classVar := 6.
classVar > 5 ifTrue:m" classVar raisedTo: 2]
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ORemove ar *:= 6.
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(€) ReflectivityExa x ? Comment

) Remove ar := 6.

classvVar > 5 ifTrue:m" classVar raisedTo: 2]
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2 Gonfiguration
3 u
x = [] Debug Point Browser v
| (De)activate all Search by name
Type Target Name Scope C X

Watchpoint  ReflectivityExamples2>>#methoc WatchPoint class ReflectivityExamples2 = Refresh  Remove
Breakpoint  ReflectivityExamples2>>#methoc Breakpoint  class ReflectivityExamples2

: . - enabled: (de)activates debug point
Breakpoint  ReflectivityExamples2>>#methoc Breakpoint  class ReflectivityExamples2

| Condition: Hit when the condition evaluates to true

__| Test Environment Only: Hits only when executing tests

(€) ReflectivityExa x ? Comment ] methodWithCl x

__| Chain: Each debug point is hit once in sequential order

__ngj'.hgdﬂj;haass\slla rA __| Counter: Tracks how many times the debug point was reached
(Breakpoint | .- :- 5. . . .
@ Remove ar = 6. __| Once: Deactivates debug point after one hit
classvar > 5 ifTrue :Iﬂ" classVar raisedTo: 2] | Script: Executes a script at each hit
: | Transcript: Logs to transcript at each hit
methodWithClassVarAccess Break

classVar := 5.
classVar := 6.
4 classVar > 5 ifTrue:[* classVar raisedTo: 2]

W) ND —




Search by name

Type Target Name Scope
v| Watchpoint  ReflectivityExamples2>>#methoc WatchPoint class ReflectivityExamples2

7] Breakpoint  ReflectivityExamples2>>#methoc Breakpoint

| Breakpoint  ReflectivityExamples2>>#methoc Breakpoint  class ReflectivityExamples2

methodWithClassVarAccess

> classvar := 5.
3 classVar := 6.
4 classVar > 5 ifTrue:[* classVar raisedTo: 2]




x = []

Debug Point Browser

(De)activate all

Search by name

Type

Watchpoint

Breakpoint

Breakpoint

Target Name Scope

ReflectivityExamples2>>#methoc WatchPoint  class ReflectivityExamples2
ReflectivityExamples2>>#methoc Breakpoint  class ReflectivityExamples2
ReflectivityExamples2>>#methoc Breakpoint  class ReflectivityExamples2

General information

methodWithClassVarAccess
classVar := 5.
classVar := 6.
classVar > 5 ifTrue:[* classVar raisedTo: 2]

Cc X

Refresh  Remove

v

enabled: (de)activates debug point

Condition: Hit when the condition evaluates to true

Test Environment Only: Hits only when executing tests

Chain: Each debug point is hit once in sequential order
Counter: Tracks how many times the debug point was reached
Once: Deactivates debug point after one hit

Script: Executes a script at each hit

Transcript: Logs to transcript at each hit

Break
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Watchpoint  ReflectivityExamples2>>#methoc WatchPoint class ReflectivityExamples2 | Refresh  Remove
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Breakpoint  ReflectivityExamples2>>#methoc Breakpoint  class ReflectivityExamples2
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Break

methodWithClassVarAccess
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classvVar := 6.
classVar > 5 ifTrue:[* classVar raisedTo: 2]
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Watchpoint  ReflectivityExamples2>>#methoc WatchPoint class ReflectivityExamples2 | Refresh  Remove
IBreakpoint  ReflectivityExamples2>>#methoc Breakpoint  class ReflectivityExamples2
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x = O Debug Point Browser v

(De)activate all Search by name

Type Target Name Scope C X
Watchpoint  ReflectivityExamples2>>#methoc WatchPoint class ReflectivityExamples2

Refresh  Remove

| enabled: (de)activates debug point

¥
CO n't rOI Breakpoint  ReflectivityExamples2>>#methoc Breakpoint  class ReflectivityExamples2
%

Breakpoint  ReflectivityExamples2>>#methoc Breakpoint  class ReflectivityExamples2

Condition: Hit when the condition evaluates to true

Test Environment Only: Hits only when executing tests

G e n e ral i n fO rm at i O n Chain: Each debug point is hit once in sequential order

Counter: Tracks how many times the debug point was reached

Once: Deactivates debug point after one hit

Script: Executes a script at each hit

Transcript: Logs to transcript at each hit
Break

methodWithClassVarAccess
classVar := 5.

classvVar := 6.
classVar > 5 ifTrue:[* classVar raisedTo: 2]

Configuration

Source code




£ Composition

methodWithClassVarAccess

Breakpoint behaviors \, 1
classvar := 5.

classvVar := 6.

R
2
3
4 classVar > 5 ifTrue:[* classVar raisedTo: 2]

| Once: [
.; ec . "€




Composition

nt Browser v | x = [0 Transcript
X E
B rea k p O i n t b e h aV i O rS \}: enabled: (de)activates debug point 6

e __| Condition: Hit when the condition evaluates to true

__| Test Environment Only: Hits only when executing tests

Chain: Each debug point is hit once in sequential order

| Counter: Tracks how many times the debug point was reached

Current Count: 4

. methodwithClassVarAccess

Once: Deactivates debug point after one hit
2 classvar := 5.

Script: Executes a script at each hit
classVar\:= 6. - ) ) ;
4 classVar 5 ifTrue:[* classVar raisedTo: 2] Transcript: Logs to transcript at each hit
classVar.

contextual access
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nt Browser

X

C
. Refresh Remove
B re a k p O i n t b e h aV i O rS ‘ enabled: (de)activates debug point
e __| Condition: Hit when the condition evaluates to true
__| Test Environment Only: Hits only when executing tests
__| Chain: Each debug point is hit once in sequential order
Counter: Tracks how many times the debug point was reached

Current Count: 4

- methodWithClassVarAccess __| Once: Deactivates debug point after one hit
: classVar := 5. "] Script: Executes a script at each hit

' classVar\:= 6. ) ) i

4 classVar AS 1ifTrue:[* classVar raisedTo: 2] Transcript: Logs to transcript at each hit

classVar.

contextual access

x = [0 Transcript v
6 .-
6
6
6

v




Object-centric breakpoints

Name Scope #

Breakpoint  SindarinDebuggerTest>>#testTer Breakpoint class Sind:

Breakpoint  #testObjectPoint => InstanceVari: var_testObjobj Sindar
' SindarinDebuggerTest>>#testSte hlue class Sindiv

testStepToMethodEntry
| dbg |

dbg :
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(1 to: 10) atRandom < 5 ifTrue: [:= 10 atRandom ].

value crTrace
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( Building breakpoints

e Why?
* Recurring needs

* Problem or domain specific needs
* New debugging tools (transfering research)

e How?
 Subclass and specializes the breakpoint model

* Subclass and specializes the breakpoint behavioral
model

* Build presenters for automatic tool integration
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JaN
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C Simplified model

DebugPoint <> DebugPointBehavior

BreakPoint

JaN

WatchPoint

JaN

Script

Log

what any breakpoint can do
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C Simplified model

DebugPoint DebugPointBehavior
JAN
BreakPoint Script
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; Spec presenters '

what any breakpoint can do
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replay
point

operation
methodWithCondition

value := |(1 to: 10) atRandom < 5
ifTrue: [ self trueValue ]
ifFalse: [ self falseValue ].
value crTrace
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(2 DEMO: building a replay point
point

* replace the operation
by a custom value

operation

methodWithCondition

value := |(1 to: 10) atRandom < 5

ifTrue: [ self truevalue ] *
ifFalse: [ self falsevalue ].

value crTrace

Inject the value into
the conditional
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¢ Integrated into Pharo 12

* Replaces the breakpoint implementation
 Works (it should...)

e What’s next?

* Model improvements
e GUI improvements
* Archive and remove the old breakpoint model
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- Search by name

Type Target Name Scope
| Watchpoint  ReflectivityExamples2>>#methoc WatchPoint  class ReflectivityExamples2

7] Breakpoint  ReflectivityExamples2>>#methoc Breakpoint

| Breakpoint  ReflectivityExamples2>>#methoc Breakpoint  class ReflectivityExamples2

methodWithClassVarAccess

> classvar := 5.
3 classVar := 6.
4 classVar > 5 ifTrue:[* classVar raisedTo: 2]

Thank you!



