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How to get more 
people onboard with 
Pharo ?

Applying Large Language Models (LLM) as 

support for the onboarding of new 

developers. 

ChatGPT3.5

Marius Pingaud

Pascal Zaragoza
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The Typical New User Experience: How do I do this?

ESUG 2024

User

How do I do … in 
Pharo / Smalltalk?
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The Typical New User Experience: Using documentation

ESUG 2024

User

How do I do … in 
Pharo / Smalltalk?

documentation

Question

Answer

+  highly complete  information

- Highly dependent on 

documentation availability



444

The Typical New User Experience: Asking experts

ESUG 2024

User

How do I do … in 
Pharo / Smalltalk?

Expert

Question

AnswerAnswer

Question

Forum

+ rich & interactive response

- Can be a slow process
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The New User Experience: Large Language Models (LLM) 

ESUG 2024

Question

LLM

User Interface
(e.g., ChatGPT)User

Answer

Simple User Interaction with LLM

Question

Answer

What are the main methods 
used to sort a collection in 

Pharo, and how do they differ?

In Pharo Smalltalk, the 
main methods used to 

sort a collection are 
`sort`, `sort:` and 
`sort:ascending:`.
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New User Experience using Large Language Models (LLM) 

ESUG 2024

User

In Pharo Smalltalk, the 
main methods used to 

sort a collection are 

`sort`, `sort:` and 
`sort:ascending:`.

What?!
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New User Experience using Large Language Models (LLM) 
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User

Sorting methods for Collection & Ordered Collection.
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New User Experience using Large Language Models (LLM) 

ESUG 2024

User

Sorting methods for Collection & Ordered Collection.

Problem #1: LLMs have a limited 

knowledge with cutoff date for 

learning
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New User Experience using Large Language Models (LLM) 
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Question

LLM

User Interface
(e.g., ChatGPT)User

Answer

Simple User Interaction with LLM

Question

Answer

How do I use … library?

I’m sorry, I don’t 
anything about…
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New User Experience using Large Language Models (LLM) 

ESUG 2024

Question

LLM

User Interface
(e.g., ChatGPT)User

Answer

Simple User Interaction with LLM

Question

Answer

How do I use … library?

I’m sorry, I don’t 
anything about… 

Problem #2: Internal business 

rules are unknown to 

foundational LLMs.
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The problem with foundational LLMs

ESUG 2024

Problem #1: LLMs have a limited 

knowledge with cutoff date for 

learning

Problem #2: Internal business 

rules are unknown to 

foundational LLMs.

Solution #1: Finetune the model with 

business rules and knowledge.

- Advantage: high initial costs, lower 

inference costs

- Disadvantage: expensive and difficult 

process which can still cause 

hallucinations when answering 

questions.

Solution #2: Retrieval-Augmented 

Generation (RAG)

- Provide both the relevant business rules 

and the initial question to the user

- Advantage: Documentation is all you 

need.

- Disadvantage: Higher inference costs

due to bigger context size.
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The problem with foundational LLMs

ESUG 2024
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The problem with foundational LLMs

ESUG 2024

Problem #1: LLMs have a limited 

knowledge with cutoff date for 

learning

Problem #2: Internal business 

rules are unknown to 

foundational LLMs.

Solution #1: Finetune the model with 

business rules and knowledge.

- Advantage: high initial costs, lower 

inference costs

- Disadvantage: expensive and difficult 

process which can still cause 

hallucinations when answering 

questions.

Solution #2: Retrieval-Augmented 

Generation (RAG)

- Provide both the relevant business rules 

and the initial question to the user

- Advantage: Documentation is all you 

need.

- Disadvantage: Higher inference costs

due to bigger context size.
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The problem with foundational LLMs
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Problem #1: LLMs have a limited 

knowledge with cutoff date for 

learning

Problem #2: Internal business 

rules are unknown to 

foundational LLMs.

Solution #1: Finetune the model with 

business rules and knowledge.

- Advantage: high initial costs, lower 

inference costs

- Disadvantage: expensive and difficult 

process which can still cause 

hallucinations when answering 

questions.

Solution #2: Retrieval-Augmented 

Generation (RAG)

- Provide both the relevant business rules 

and the initial question to the user

- Advantage: Documentation is all you 

need.

- Disadvantage: Higher inference costs

due to bigger context size.



151515

Retrieval Augmented Generation (RAG)

ESUG 2024

User
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Retrieval Augmented Generation (RAG)

ESUG 2024

Question

User Interface
User

Answer



171717

Retrieval Augmented Generation (RAG)
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Question

Document 

Retrieval 

Algorithm

User Interface

Vectorial DB with 

documentation

User

A
P

I

Answer

Top 

N docs
Question
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Context-

building logic

Retrieval Augmented Generation (RAG)

ESUG 2024

Question

Document 

Retrieval 

Algorithm

LLM

User Interface
User

A
P

I

Answer

Vectorial DB with 

documentation

Answer
Question

+

docs
Top 

N docs
Question
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Context-

building logic

Retrieval Augmented Generation (RAG)

ESUG 2024

Question

Document 

Retrieval 

Algorithm

LLM

User Interface
🖺

Formatting the 

LLM response

Returning the answer with the sources

User

A
P

I

Answer

Vectorial DB with 

documentation

Answer
Question

+

docs
Top 

N docs
Question
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Context-

building logic

Retrieval Augmented Generation (RAG)

ESUG 2024

Question

Document 

Retrieval 

Algorithm

LLM

User Interface
🖺

Formatting the 

LLM response

Returning the answer with the sources

User

A
P

I

Answer

Vectorial DB with 

documentation

Answer
Question

+

docs
Top 

N docs
Question

Information Retrieval
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Context-

building logic

Retrieval Augmented Generation (RAG)

ESUG 2024

Question

Document 

Retrieval 

Algorithm

LLM

User Interface
🖺

Formatting the 

LLM response

Returning the answer with the sources

User

A
P

I

Answer

Vectorial DB with 

documentation

Answer
Question

+

docs
Top 

N docs
Question

Generation
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Context-

building logic

Retrieval Augmented Generation (RAG)

ESUG 2024

Question

Document 

Retrieval 

Algorithm

LLM

User Interface
🖺

Formatting the 

LLM response

User

A
P

I

Answer

Vectorial DB with 

documentation

Answer
Question

+

docs
Top 

N docs
Question

How do we build this 

database ?

Returning the answer with the sources
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Preparing the data source

ESUG 2024

Collect Pharo 

documentation

Clean and parse each 

document

Segment document 

and embed them

Pharo-wiki
Pharo by

Example

Roassal

Documentation

Extracts the data as a 

readable text

Associate a N-

dimension vector to the 

semantic value of each 

document



242424

Context-

building logic

Retrieval Augmented Generation (RAG)

ESUG 2024

Question

Document 

Retrieval 

Algorithm

LLM

User Interface
🖺

Formatting the 

LLM response

User

A
P

I

Answer

Vectorial DB with 

documentation

Answer
Question

+

docs
Top 

N docs
Question

Returning the answer with the sources

Tuple(vector, segment, metadata)
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Tooling & Evaluation
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▪ Set out to create the initial tooling in Python

▪ Identify and process a set of Pharo documentation:

▪ https://github.com/pharo-open-
documentation/pharo-wiki.git

▪ https://github.com/SquareBracketAssociates/PharoByE
xample9

▪ https://github.com/SquareBracketAssociates/Learning
OOPWithPharo

▪ https://github.com/SquareBracketAssociates/BuildingA
pplicationWithSpec2

▪ https://github.com/pharo-
graphics/RoassalDocumentation.git

Tooling

ESUG 2024

https://github.com/SquareBracketAssociates/LearningOOPWithPharo
https://github.com/SquareBracketAssociates/LearningOOPWithPharo
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Onboarding tool demo
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Evaluation protocol

ESUG 2024

▪ Objective : Compare the LLM’s ability to answer Pharo-
related questions with a RAG-enabled LLM

▪ Generate a set of textbook questions (21 questions)

▪ Extract a set of questions from Discord and Stack 
Overflow (19 questions)

▪ Manual evaluation of each answer on a scale of 0 to 3

▪ 0 : terrible

▪ 1 : not ok

▪ 2 : ok

▪ 3 : perfect

Compare Naïve and RAG results

LLM

Q

Q

Q

A AVS
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Initial Results

ESUG 2024

0

5

10

15

20

0 1 2 3

Results from Textbook 

Questions

Naive LLM RAG

▪ Textbook questions (21 questions):

▪ When asking basic questions that exists in the 
documentation, the RAG technique gives near perfect 
answer

▪ Stack Overflow questions (19 questions):

▪ Initial results are closer

▪ There is a shift towards higher answer quality

0

2

4

6

8

0 1 2 3

Results from Stack Overflow 

Questions

Naive LLM RAG
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Conclusion & Perspectives
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▪ Textbook-based results are extremely positive

▪ Stack Overflow-based results shows a lack of significant 
impact for a RAG-based onboarding LLM.

▪ Why ? What happened ?

▪ Answers where the RAG-based technique was better, the 
documents provided with the questions did contain an 
element of the answer needed.

▪ Answers where the RAG-based technique was not better, 
the documents provided with the question did not contain
any elements of the answer required.

▪ What could this mean ? 

▪ Not enough documents to answer some of these questions

▪ the question is too complex to answer with a simple request

Conclusion

ESUG 2024

Answer contains 

a complete

answer with an 

example.

Answer contains 

a simple

explanation with 

some ambiguity.

RAG-based 

LLM

Naïve 

LLM
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▪ Increase the amount of documentation we parse.

▪ Include other data sources (e.g., moose models, 
Pharo code).

▪ Allows use to ask questions about a specific code 
base (e.g., what is the super class of …)

▪ Use agent-based programming to iterate over more 
complex questions.

▪ User experimentation (launching experimentation 
within the company so that our users can try the tool 
-> collect Q&A with evaluation) 

Perspectives

ESUG 2024
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Thank you for your 
attention.

Any Questions?

onboarding.pharo.research-bl.com
pascal.zaragoza@berger-levrault.com

marius.pingaud@berger-levrault.com
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