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The Typical New User Experience: How do | do this?

How do |l do ... in

Pharo / Smalltalk?e
g B -=

O Daiit Publish Bindings Versions  Pages

Playground -0 x

O 1| collection := OrderedCollection newFromArray: { 1. 8. 5. 3 }.

(@) 2

3| collection orderby

User

+L
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The Typical New User Experience: Using documentation

How do |l do ... In
Pharo / Smalltalk?

+ highly complete information

- Highly dependent on
documentation availability

Q adding property to moose entities

Wiki

To analyze a system in a given programming language o

= Predefined Entities

O
to selec % |[®] to navigat ” search by @ algolia

Question
»
>
. Pharo with Style
- Pharo with Style presents some guidelines to improve your writing program skills. New version from 02/2022
I l Answer available as printed book!
documentation
User
:uu can support Stéphane Ducasse.
Donate

©Keepers of the lighthouse 2022
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The Typical New User Experience: Asking experts

How doldo ... in
Pharo / Smalltalk?e

+ rich & interactive response
- Can be a slow process

Expert

O
O
o " Forum )
Question _ e Question -
I I ) Answer = _ ) Answer
User \-—_-n i /
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The New User Experience: Large Language Models (LLM)

What are the main methods
used to sort a collection in
Pharo, and how do they differ?

O
o p
(0]
Question Question
R
4 )
Answer
| | ‘—Answer User Interface ©
User (eg, ChOTGPT)
In Pharo Smalltalk, the
main methods used to
\ j sort a collection are

“sort’, “sort:” and

Simple User Interaction with LLM SOI’T.CISCGI’]CIII’]Q. )
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New User Experience using Large Language Models (LLM)

In Pharo Smalltalk, the

main methods used fo

sort a collection are
“sort’, “sort: and

o sort:ascending:. B — e
o =
D ings  Versions Pages
1| collection := OrderedCollection newFromArray: { 1 . @. 5. 3 }.
2
3| "default sort in ascending using the '<="."
I I 4| collection sort. "an OrderedCollection(® 1 3 5)"
5
User 6| "sort based on custom comparison block"
T|collection sort: [ :a :b | a > b ]. "an OrderedCollection(s 3 1 @)"
8
) 9| "sort based on custom comparison block and order?"
O 10| collection sort: [ :a :b | a < b ] ascending: true. "Instance of OrderedCollection did not
O derstand #sort:ascending:"
Berger
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New User Experience using Large Language Models (LLM)

A Method: Collection>>sorted: -0 x
[E3 Clap-Examples co © ProtoObject “ »  instanceside | = setLoadsinMetacelloProject: C
» [1Clap-Tests » [ extensions * setRequiresinMetacelloPac
» [ ClassAnnotation A flags sign
» [ ClassAnnotation-Tests i accessing sin
= [ ClassDafinitionPrintars — ¥ ( lRac =i adapting —a
A Method: SequenceableCollection>>sort: -0 x adding - sorted
» [ Collections-Abstract-Traits L » { } FLLargeldentityHashedColl™| » instance side ,[] A shuffle Lo comparing * sorted:
» [ Collections-Arithmetic » { } HashedCollection » [C extensions huffleBy: converting spotteritemsFor:
[£] Collections-Arithmetic-Tests } Heap accessing = shuffled copying sqrt
» [ Collections-Atomic » | }OrderedDictionary comparing shuffledBy: displaying squared
» [ Collections-Atomic-Tests ¥ { } RTAbstractCollectio converting sixth enumerating standardDeviation
» [ Collections-DoubleLinkedList } RTSequenceableCollectio copying = filter streaming stdev
» [ Collections-DoubleLinkedList-Te }RTreeCollection enumerating sort math functions + stonOn:
» [£] Collections-Native 2 onc W private - sort: printing + storeOn:
» [ Collections-Native-Tests removing - W private * sum
¥ [2] Collections-Sequenceable g X v sorting + sorted: ramaving i - ¥
Uncategorized }interval splitjoin sortedAs: lass side | @ Methods O Vars | Classrefs. O, implementors ©, Senders
Base ¥ { | LinkedList streaming ~ splitindicesDo: ide meth x NRES « »
Manifest } FreeTypeCacheLinkedLi: testing spliton: s
Ordered } semaphore abstract splitOn:do:
- ) Ve T spliton:indicesDo: Ehe same elements as self but its
Filter... w | Filter.. v wrarridas v P vftake two arguments and return true if
I I @ All Packages O ScopedView O Projects | O Flat @ Hier. | @ Inst.side O Classside | @ Methods O Vars | Classrefs. @ Implementors ©, Senders fBlock is nil then <= is used for
*7 Dependencies (€) Sequenceablel % ? Comment x  Elsort: * =+ Inst. side meth x ﬁ] i} Beas
User O/ sort: asortBlock ~
"Sort this array using aSortBlock. The block should take two arguments
and return true if the first el nt should preceed the second one." 30"
"({3. 9. 1} sort: [:a :b | a b 1) >>> #(1 3 9)"
"({3. 9. 1} sort: [ra :b | a>=Db ]) >>> #(3 2 1)" v
"({#xa. #xc. #xz. #xb. #xy} sort: #last ascending) >>> #(xa xb xc xy xz)" % # Collections-Sequenceable ¥ extension [ F +L w
self
mergeSortFrom: 1
to: self size
by: asortBlock v
1/11[1] % # sorting L] extension L1 F +L w

Sorting methods for Collection & Ordered Collection.
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New User Experience using Large Language Models (LLM)

hd Method: Collection>>sorted: -0 x
[E3 Clap-Examples co © ProtoObject “ »  instanceside | = setLoadsinMetacelloProject: C
» [ Clap-Tests » [ extensions resinMetacelloPackage
» [£] ClassAnnotation A flags
» [ ClassAnnotation-Tests T accessing
&« & [ ClassneafinitinnPrintars a w i lRaas - adapting
- Method: SequenceableCollection>>sort: -0 x adding - sorted
» [ Collections-Abstract-Traits e » { }FLiarg: tityHashedColl ™| »  instance side &[] A1 shuffle “l  comparing * sorted:
» [ Collections-Arithmetic » { } HashedCollect » [C extensions shuffleBy: converting
[£1 Collections-Arithmetic-Tests } accessing = shuffled copying sqrt
» [£] Collections-Atomic i SR displaying squared
» [ Collections-Atomic-Tests . . enumeratin; standardDeviation
» [£] Collections-DoubleLinkedList Problem # ] : LLMS hOVG O ||m|Ted I\lterstreamii;ng stdev
» [ Collections-DoublelinkedList-Te o math functions + stonOn:
B3 Collctions Native knowledge with cutoff date for pining - coreon:

» [ Collections-Native-Tests

learning e o v

¥ [£1 Collections-Sequenceable nd .
Uncategorized el — klassside | @ Methods O Vars | Classrefs. L implementors ©, Senders
Base streaming ~ splitindicesDo: ide meth NRES « »
Manifest testing spliton: s
Ordered abstract spliton:do:
- overridden splitOn:indicesDo: jre same elements as self but its
Filter... v v rarridac v lisnnCires. wvltake two arguments and return true if
I I @ All Packages O ScopedView O Projects | O Flat @ Hier. | @ Inst.side O Classside | @ Methods O Vars | Classrefs. @ Implementors ©, Senders fBlock is nil then <= is used for
*7 Dependencies (2) Sequenceablel » ? Comment *® ] sort: * -+ Inst. side meth x ﬂ] i ﬂ -
o ~
User @) sort: asortBlock
"sort this a y using aSortBlock. The block should take two arguments .
and return true if the first e t should preceed the second one." 30
"({3. 9. 1} sort: [ra :b | a <= b ]) >>> #(1 2 9)"
"({3. 9. 1} sort: [ra :b | a>=Db ]) >>> #(3 2 1)" v
"({#xa. #xc. #xz. #xb. #xy} sort: #last ascending) >>> #(xa xb xc xy xz)" % # Collections-Sequenceable ¥ extension [ F +L w
self
mergeSortFrom: 1
to: self size
by: asortBlock v
1/11[1] % # sorting L] extension L1 F +L w

Sorting methods for Collection & Ordered Collection.
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Simple User Interaction with LLM
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I'm sorry, | don’t
anything about...
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New User Experience using

User
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Question

«—
Answer

N

4 )
User Interface
(e.g.. ChatGPT)

How do | use ... library?

Problem #2: Internal business
rules are unknown to
foundational LLMs.

Question

)

A

Answer

Simple User Interaction with LLM

Large Language Models (LLM)

I'm sorry, | don’t
anything about...
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The problem with foundational LLMs

Solution #1: Finetune the model with

business rules and knowledge.

- Advantage: high initial costs, lower
inference costs

- Disadvantage: expensive and difficult

Problem #1: LLMs have a limited process W.hiCh can still cause
knowledge with cutoff date for hqlluqnahons when answering
learning questions.
Illlllll..........'»
Problem #2: Internal business Solution #2: Retrieval-Augmented
rules are unknown to Generation (RAG)
foundational LLMs. - Provide both the relevant business rules

and the initial question to the user

- Advantage: Documentation is all you
need.

- Disadvantage: Higher inference costs
due to bigger context size.

Berger
Levrault
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The problem with foundational LLMs

ChatGPT v @ ChatGPT v

What is Tom's age ?

174 Jack is 24 years old. Tom is 3 years

younger.
How old is Tom?

® Tom's age is not provided in your question. Could

you please give more context or details about who

Tom is or any relevant information that might help
@ Tomis 21 years old.

@ O

determine his age?

DR

Berger
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The problem with foundational LLMs
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Retrieval Augmented Generation (RAG)

User
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Retrieval Augmented Generation (RAG)

Question
| | PR 4 )
Answer User Interface
User

- J
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Retrieval Augmented Generation (RAG)
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Retrieval Augmented Generation (RAG)

Question
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Answer

N
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)
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Retrieval Augmented Generation (RAG)

l LLM
Vectorial DB with
documentation

Question

e L

| | | «— a4 . Context-
Answer User Interface 7

User building logic

Document
Reftrieval

\ j B \ Algorithm / \ / \ /

A 4

API

B

\ 4

4

(T

Formatting the
LLM response

Returning the answer with the sources

Berger
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Retrieval Augmented Generation (RAG)

Information Retrieval l LLM
Vectorial DB with
documentation

Question

. Top + Answer
Question T lNdocs docs l

- Niale N N N

e <

| | | «— a4 . Context-
Answer User Interface 7

User building logic

Document
Reftrieval

\ j B \ Algorithm / \ / \ /

3

A 4

API

\ 4

4

(T

Formatting the
LLM response

Returning the answer with the sources
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Retrieval Augmented Generation (RAG)

l LLM Generation
Vectorial DB with
documentation

Question

. Top + Answer
Question T lNdocs docs l

- ale N | N N

| 3

| | D — o Context-
Answer User Interface 7 v

User building logic

Document
Reftrieval

\ j B \ Algorithm / \ / \ /

3

A 4

API

A 4

(T

Formatting the
LLM response

Returning the answer with the sources
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Retrieval Augmented Generation (RAG)

How do we build this Vectorial DB with .
database 2 documentation
Queshon
Top Answer
Question il N docs docs

4 A 4 N

=

I N

| | D — o Con’réx’r—
Answer User Interface 7 v

User building logic

Document
Reftrieval

\ j B \ Algorithm / \ / \ /

4

A 4

API

\ 4

4

(T

Formatting the
LLM response

Returning the answer with the sources
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Preparing the data source

Collect Pharo Clean and parse each Segment document
documentation document and embed them
Pharo-wiki Pharo by =5 {é&
N Example =] &
8 — e
<> - — 2
= ™ BB =
 POF | — &
=] e
[—1I /o
a0 BB -
mm [Por | - &
Roassal - E E — S
Documentation m _ {éﬂx‘?

Associafte a N-
dimension vector to the
semantic value of each

document

Extracts the data as a
readable text

Berger
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Retrieval Augmented Generation (RAG)

Tuple(vector, segment, metadata) Vectorial DB with .
documentation
Queshon
Top Answer
Question 1 Ndocs docs

4 A 4 N

=12}
Question ' ——7 '
. = - A
ﬁ | = ‘ — ' R C' - —_—
| | | —— < E — IE " Context- g
Sser Answer User Interface y 7 building logic )
Formatting the
Document
. LLM response
Refrieval

\ j B \ Algorithm / \ / \ /

Returning the answer with the sources

Berge
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Tooling

. Set out to create the initial tooling in Python

" Identify and process a set of Pharo documentation:
= https://github.com/pharo-open-

documentation/pharo-wiki.git - gj@ wm
= https://github.com/SquareBracketAssociates/PharoByE documenttien Queston

xample? awson ]|, g HAM
= hitps://github.com/SquareBracketAssociates/Learning EEE

OOPWithPharo == e

JIEEE| | ¢

= https://github.com/SquareBracketAssociates/BuildingA 3| [EBE b i =

pplicationWithSpec?2 Document M response.
= https://github.com/pharo- Agertinm

Returning the answer with the sources

graphics/RoassalDocumentation.git

Berger
Levrault


https://github.com/SquareBracketAssociates/LearningOOPWithPharo
https://github.com/SquareBracketAssociates/LearningOOPWithPharo

Onboarding tool demo
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Evaluation protocol

" Objective : Compare the LLM’s ability to answer Pharo-
related questions with a RAG-enabled LLM

= Generate a set of textbook questions (21 questions)

= Extract a set of questions from Discord ond Stack | | TL_—
Overflow (19 questions)

Confext-
building logic

Formatting the
LM response

= Manual evaluation of each answer on a scale of 0 fo 3
=  O:terible

:not ok v

1
= 2:0k v v
= 3:perfect 0 Vs 0

Compare Naive and RAG results

4

Berger
Levrault
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Initial Results

=  Textbook questions (21 questions):

= When asking basic questions that exists in the
documentation, the RAG technigue gives near perfect
answer

. Stack Overflow questions (19 questions):
= |nitial results are closer
= There is a shift towards higher answer quality

Berger
Levrault

20
15
10

O N M O ©

Results from Textlbook
Questions

0 1 2 3

ENaive LLM = RAG

Results from Stack Overflow
Questions

0 1 2 3

ENaive LLM = RAG
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ESUG 2024 When a path is not specified, where are files saved by default in Pharo?

Asked 3 years, 5 months age  Modified 3 years, 5 months ago  Viewed 209 times
C I i
o n C U SI o n A I'm currently learning Pharo.through the Pharo MOOC, and in the lecture "3.8 S.tream Overview", Featured on M
we are presented the following example of a stream operation used to create files:
3 0 We spent :
| gz | requests —
- stream := 'hello.txt' asFileReference writeStream. Upcomin
stream nextPutAll: 'Helle Pharo!'. - a?d mni

stream close.

2 The [lib] ta

| executed this code snippet in playground, then | looked the folder where | installed Pharo, under & What maki
~/src/pharolauncher in Ubuntu 20.04, to check if the file was created, but it was nowhere in the logged-in
=  Textbook-based results are extremely positive folder o ts subfolders. -
elate:

file save smalltalk pharo

=  Stack Overflow-based results shows a lack of significant ER o

impact for a RAG-based onboarding LLM. &=

rkspac
=  Why 2 What happened 2 [ [
. 1 1
= Answers where the RAG-based technique was better, the How to use computers mic as Sound Inout in Pharo
documents provided with the questions did contain an P P
elemen'l' of 'I'he answer needed Asked 4 years, 11 months ago  Modified 4 years, 5 months ago  Viewed 90 times
- Qr:ggrcsuvrr?eerﬁs Tgreosllgg(_jbvsliﬁC:JZCC]TJE?TLIJOGH\A&CI]C{S :g: kc)g::%llﬂ - It is possible to use a file as InputSound (for example if you want to play a music).
any elements of the answer I’equired, 4 But, | do not find a way to use the mic of my computer as an input stream sound in Pharo.
=  What could this mean 2 v  Anyideas?
= Not enough documents to answer some of these questions audio pharo

= the guestion is too complex to answer with a simple request

Share Edit Follow asked Jul 10, 2019 at 12:57

% Benoit Verhaeghe
658 01 »8 022

Berger
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Perspectives

= Increase the amount of documentation we parse.

. Include other data sources (e.g., moose models,

Pharo code). @ "
= Allows use to ask questions about a specific code Ciocumeniation @ BLJ:
base (e.g., whatis the super class of ...) _—

complex guestions.

A ¥
User Interface

. Use agent-based programming to iterate over more ﬁ
I

Context-
building logic

Formatting the
LLM response

" User experimentation (launching experimentation et ocument
within the company so that our users can try the tool Felrieval
-> collect Q&A with evaluation) °

Returning the answer with the sources

Berger
Levrault




onboarding.pharo.research-bl.com

Thank you for your
ailtention.

Any Questions?

pascal.zaragoza@berger-levrault.com
marius.pingaud@berger-levrault.com
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