

Pavel Krivanek

Technical documentation support in

● It's Time-Consuming
● It's Not "Fun"
● It Can Become Outdated Quickly
● Assumption of Obsolescence - code is "self-documenting"
● Belief in Tools (Javadoc or Doxygen)
● Lack of Incentives (ship features!)
● Not Everyone Feels Equipped

– requires a different skill set
– fear of incompleteness or inaccuracy

Public secret:
Developers don't like to write documentation

Good quality and up to date
documentation is important

Lepiter, Documentation Browser...

● Sometime after…
● Sometime after

...but this time for real
● During the development

– quickly outdated, rewrites

● Before
– DDD - Documentation-driven development

● Literate programming
● Combination

When?

● Academic and nonfiction
writing

● Based on a technique
used by Niklas Luhmann

● Zettelkasten

Smart notes

● Note-taking system
● Linked idea cards
● Individual idea per card with

an ID
● Continuous knowledge

growth

Zettelkasten

● When writing an output
document, all the content is
already there, it just needs to be
filtered, cleaned and reviewed

● Can it be used for the code
documentation?

Zettelkasten

Computer program

implementors senders

Computer program
=

Fractal structure

...independently
on the

representation

Some tools
do it better!

● Various ways of indexing
– Alphabetical
– Order of creation
– Various control flows
– TDD logic
– Dependency order
– Loading order
– ….

How to find a path
in a code fractal?

● alphabetical
● by protocols
● by variables
● mostly one class only...

Pharo – code indexing

Quick
notes

Tracking the
thought process

Writing is thinking

Documentation snippets
+

Code indexing
+

Quick notes
+

Logged rubber duck
+

Thought process tracking

ONE TOOL
???

A cool name required!

Metacello new

 baseline: 'DocumentationSupport';

 repository: 'github://bauing-schmidt/DocumentationSupport:main';

 load.

● Prototype
● Vision and requested features specification
● Asked RMoD Team at Inria to improve it

– Intern Leo Frere
● improved Search
● UI enhancements...

Documentation Support

● Microdown
● Spec
● Immediate

preview
● Changes

propagation to all
windows

Basics

● Basic unit: Chapter
● The best name?
● “free flowing”
● Key (for references)
● Title independent
● Organized to Books, Libraries

Model

● Subchapters

● Optional explicit
order

● Both set by drag&drop

Chapter

● Direct reference
[Displayed reference text](ref://3z9zm765drcfzotsq9dvc48d4)

– navigates to the given chapter

● References with inclusion
[Displayed reference text](include://3z9zm765drcfzotsq9dvc48d4)

– includes given chapter

– for longer documentation documents

References

● Library folder

– evxt7d77f32hb18qgh8kt082w (book folder)
● description.md

title: 'Documaps'
key: 'evxt7d77f32hb18qgh8kt082w'

● 3ckid6ubue60xjwpy8dxv2q1s.md
key: '3ckid6ubue60xjwpy8dxv2q1s'
parent: 'evxt7d77f32hb18qgh8kt082w'
nextChapter:

Replay of events

The subject of this chapter is...

Serialization
● External tools

friendly
● Multiple projects

documentation

● Git & other tools friendly
● Stored in the Git repository next to the

source code

● SPHINX support
– Python Documentation Generator
– By Massimo Nocentini

Serialization

● Jumping between results (bidirectional)
● Quick jumping between found chapters

Search

● Standalone window
● Calypso aware
● Shows references to

the currently browsed
method, class, package

● Bidirectional
references

Documentation Context

Future ideas
– Immediate preview
– Smarter context display
– Cooperation with the source

editor
– Automatic browser history logging
– Bookmarks
– ….

Just the beginning

(ClyFullBrowserMorph openOn: ClyNavigationEnvironment currentImage) openInExternalWindow

Native OS windows

Multiple monitors

● Prevents loss of contents
● Not every single

character
● Currently an

experimental feature

Epicea integration

An external tool will never
have close, solid integration
with the IDE

– Tonel format?
– Iceberg integration?

Integration
issues

– Refactorings?
– References to the documentation directly from the method code?
– Integrity checks and validation of up-to-dateness of the

documentation?
– Support of future tools

Integration issues

Let’s make documentation entities
the first-class citizens

Humble proposal

Humble proposal

● Part of the Pharo language metamodel
● Built-in support in current tools
● Minimal API allowing future extensions

– just know about mutual references to other metamodel
entities

– enable future evolving

● No grammar changes required
● Relatively small effort with immediate gain
● Almost everything else is file-based
● Description of packages, instance

variables etc.
● Usage for automatic logging

– manually executed tests
– visited methods...

Thank you for your attention!

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

