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● It's Time-Consuming
● It's Not "Fun"
● It Can Become Outdated Quickly
● Assumption of Obsolescence - code is "self-documenting"
● Belief in Tools (Javadoc or Doxygen)
● Lack of Incentives (ship features!)
● Not Everyone Feels Equipped

– requires a different skill set
– fear of incompleteness or inaccuracy  

Public secret: 
Developers don't like to write documentation



  

Good quality and up to date 
documentation is important

Lepiter, Documentation Browser...



  

● Sometime after…
● Sometime after 

...but this time for real
● During the development

– quickly outdated, rewrites

● Before
– DDD - Documentation-driven development

● Literate programming
● Combination 

When?



  

● Academic and nonfiction 
writing

● Based on a technique 
used by Niklas Luhmann

● Zettelkasten

Smart notes



  

● Note-taking system
● Linked idea cards
● Individual idea per card with 

an ID
● Continuous knowledge 

growth

Zettelkasten



  

● When writing an output 
document, all the content is 
already there, it just needs to be 
filtered, cleaned and reviewed 

● Can it be used for the code 
documentation?

Zettelkasten



  

Computer program

implementors senders



  

Computer program 
= 

Fractal structure



  

...independently
on the 

representation



  

Some tools 
do it better!



  

● Various ways of indexing
– Alphabetical
– Order of creation
– Various control flows
– TDD logic
– Dependency order
– Loading order
– ….

How to find a path 
in a code fractal?



  

● alphabetical
● by protocols
● by variables
● mostly one class only...

Pharo – code indexing



  

Quick
notes



  

Tracking the 
thought process

Writing is thinking



  

Documentation snippets
+

Code indexing
+

Quick notes
+

Logged rubber duck
+

Thought process tracking

ONE TOOL
???



  

A cool name required!



  

Metacello new

   baseline: 'DocumentationSupport';

   repository: 'github://bauing-schmidt/DocumentationSupport:main';

   load.



  

● Prototype
● Vision and requested features specification
● Asked RMoD Team at Inria to improve it

– Intern Leo Frere
● improved Search
● UI enhancements...

Documentation Support



  



  

● Microdown
● Spec
● Immediate 

preview
● Changes 

propagation to all 
windows

Basics



  

● Basic unit: Chapter
● The best name?
● “free flowing”
● Key (for references)
● Title independent
● Organized to Books, Libraries

Model



  



  

● Subchapters

● Optional explicit 
order

● Both set by drag&drop

Chapter



  

● Direct reference
[Displayed reference text](ref://3z9zm765drcfzotsq9dvc48d4)

– navigates to the given chapter

● References with inclusion
[Displayed reference text](include://3z9zm765drcfzotsq9dvc48d4)

– includes given chapter

– for longer documentation documents

References



  

● Library folder

– evxt7d77f32hb18qgh8kt082w (book folder)
● description.md

title: 'Documaps'
key: 'evxt7d77f32hb18qgh8kt082w'

● 3ckid6ubue60xjwpy8dxv2q1s.md
key: '3ckid6ubue60xjwpy8dxv2q1s'
parent: 'evxt7d77f32hb18qgh8kt082w'
nextChapter: 

# Replay of events

The subject of this chapter is...

Serialization
● External tools 

friendly
● Multiple projects 

documentation



  

● Git & other tools friendly
● Stored in the Git repository next to the 

source code

● SPHINX support
– Python Documentation Generator
– By Massimo Nocentini

Serialization



  

● Jumping between results (bidirectional)
● Quick jumping between found chapters

Search



  



  

● Standalone window
● Calypso aware
● Shows references to 

the currently browsed 
method, class, package

● Bidirectional
references

Documentation Context



  

Future ideas
– Immediate preview
– Smarter context display
– Cooperation with the source 

editor
– Automatic browser history logging
– Bookmarks
– ….

Just the beginning



  

(ClyFullBrowserMorph openOn: ClyNavigationEnvironment currentImage) openInExternalWindow

Native OS windows

Multiple monitors



  

● Prevents loss of contents
● Not every single 

character
● Currently an 

experimental feature

Epicea integration



  

An external tool will never 
have close, solid integration 
with the IDE

– Tonel format? 
– Iceberg integration?

Integration 
issues



  

– Refactorings?
– References to the documentation directly from the method code?
– Integrity checks and validation of up-to-dateness of the 

documentation?
– Support of future tools

Integration issues



  

Let’s make documentation entities 
the first-class citizens

Humble proposal



  

Humble proposal

● Part of the Pharo language metamodel
● Built-in support in current tools
● Minimal API allowing future extensions

– just know about mutual references to other metamodel 
entities

– enable future evolving



  

● No grammar changes required
● Relatively small effort with immediate gain
● Almost everything else is file-based
● Description of packages, instance 

variables etc.
● Usage for automatic logging

– manually executed tests
– visited methods...



  

Thank you for your attention!

Questions?
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