
Do	you	really	understand	
Git?

本当に分かる？

by	Guille	Polito,	Pablo	Tesone

@GuillePolito,	@Tesonep

EvreffervE

Why																				?
• Visibility

• Manage	more	than	only	code

• Lower	entry	barrier	into	the	community

• Lots	of	existing	tools

• Good	branch	support,	good	diff

• …

Where	would	you	place	
yourself?

Where	would	you	place	
yourself?

Where	would	you	place	
yourself?

Where	would	you	place	
yourself?

A	Test

$	

How	do	you	**clean**	your	working	copy?

A	Test

$	git	reset

How	do	you	**clean**	your	working	copy?

This	will	reset	your	index

A	Test

$	git	reset	--hard

How	do	you	**clean**	your	working	copy?

Well,	yes,	but	not	quite.

This	will	reset	your	working	copy.

But	not	remove	untracked	files.

A	Test
How	do	you	**clean**	your	working	copy?

$	git	reset	--hard

$	git	clean	-fd

																	is	not	easy
• New	terminology: 
 
		index,	HEAD,	pull,	push,	fetch

• False	friends:	merge,	commit

• Command-line	oriented

• Documentation	is	sometimes	ambiguous,	sometimes	
incomplete

															is	not	easy	(2)

• Multiple	workflows	are	a	two-edged	machete 
		There	is	no	One,	single	ring	to	rule	them	all

• People	mix	workflows,	philosophy	and	technical	
solutions	(try	reading	some	blogs…)

• Graphical	tools	are	too	general	or	too	specific

An	easy	way	to															

1. It’s	a	graph!

2. It’s	a	two-stage	database!

as	a	Graph
b8bfed7

7ba52e5

35ac17f

a4153b1

b01aba4 feature_branch

master_branch

v1.0	<tag>

HEAD

parent

reference
Labels:tim

e	
m
ov
es
	in
	th

is
	d
ire

cti
on

commit

37adf4e master HEAD

parent

reference
Labels:tim

e	
m
ov
es
	in
	th

is
	d
ire

cti
on

commit

37adf4e

master HEAD0c0e5ff

parent

reference
Labels:tim

e	
m
ov
es
	in
	th

is
	d
ire

cti
on

branch

parent

reference
Labels:

37adf4e

master0c0e5ff

development

HEAD

tim
e	
m
ov
es
	in
	th

is
	d
ire

cti
on

commit	(2)

parent

reference
Labels:37adf4e

master

0c0e5ffdevelopment

dc4a3e7 HEAD

tim
e	
m
ov
es
	in
	th

is
	d
ire

cti
on

checkout

37adf4e

master

0c0e5ff

development

b894b84 dc4a3e7

HEAD

parent

reference
Labels:tim

e	
m
ov
es
	in
	th

is
	d
ire

cti
on

checkout

37adf4e

master

0c0e5ff

development

b894b84 dc4a3e7

HEAD

parent

reference
Labels:tim

e	
m
ov
es
	in
	th

is
	d
ire

cti
on

DETACHED	
HEAD?

parent

reference
Labels:37adf4e

master

HEAD

0c0e5ff

v1.0.0

tim
e	
m
ov
es
	in
	th

is
	d
ire

cti
on

merge

parent

reference
Labels:37adf4e

master

0c0e5ff

development

b894b84 dc4a3e7

HEAD

tim
e	
m
ov
es
	in
	th

is
	d
ire

cti
on

merge

parent

reference
Labels:

37adf4e

master

0c0e5ff

development

b894b84 dc4a3e7

2dae910 HEAD

tim
e	
m
ov
es
	in
	th

is
	d
ire

cti
on

merge 
fast-forward

parent

reference
Labels:

37adf4e

0c0e5ff

development dc4a3e7

master HEAD

tim
e	
m
ov
es
	in
	th

is
	d
ire

cti
on

merge 
fast-forward

parent

reference
Labels:

37adf4e

0c0e5ff

development dc4a3e7 master HEAD

tim
e	
m
ov
es
	in
	th

is
	d
ire

cti
on

as	a	2-stage	
Database

Working	Copy Index Repository

What	you	see Where 
commits	are

A	“hidden” 
staging	area 
(sort	of)

Remote 
repositories

add

Working	Copy Index Repository

commit

Working	Copy Index Repository

checkout

Working	Copy Index Repository

fetch

Working	Copy Index Repository

push

Working	Copy Index Repository

pull?

$	git	fetch

$	git	merge

Iceberg

+ =

https://github.com/pharo-vcs/iceberg

+
Just	makes	it	harder

• Image-based	persistence

• Files	vs	packages

• Monticello	adds 
more	false	friends!

The	4	tips	of	the	Iceberg

Show	the	“Good”	Path

Warn	about	Destruction

Guide	out	of	the	Darkness

Use	a	Clear	Language

workingCopy	commitWithMessage:	‘message’. 
 
aRepository	head.

aBranch	pull.

Iceberg’s	Working	Copy

• A	repository	has	an 
in-image	working	copy

• A	working	copy	remembers	its	
current	commit

• Required	for	pulling,	pushing,	
diffing...

Pharo	Image

Iceberg

Working	Copy

commit=dc4a3e7

Dual	Working	Copy

Working	Copy Repository
…

To	be	able	to	work,	the	working	copy	
should	be	in-sync	with	the	working	
copy	in	disk

Pharo	Image

Iceberg

Working	Copy

commit=dc4a3e7

commit=dc4a3e7

Detached	Working	Copy

Working	Copy Repository
…

The	working	copy	in	the	image	can	get	
desync	from	the	working	copy	in	disk

Pharo	Image

Iceberg

Working	Copy

commit=dc4a3e7

commit=0c0c5ff

Why	do	I	get 
Detached	Working	Copy?

Although	quite	rare:

• Possibility	1)	You	touched	your	git	repository	from	
outside	the	image

• Possibility	2)	Your	image	crashed	in	between	commits

• Possibility	3)	You	forgot	to	save	your	image	after	a	
commit

How	do	I	get	out	of 
Detached	Working	Copy?

• Option	1)	Move	your	image	to	your	repository	state	
(load	what	is	in	the	disk)

• Option	2)	Move	your	repository	state	to	what	is	in	the	
image	(checkout	image’s	commit)

• Option	3)	Try	merging	both

Takeovers
• Git is the assembly of version control

• But you need to know the internals

• commit graph and references

• working copy, staging area

• Iceberg deals with image-based persistency

