Constant Blocks
Pharoi

Marcus Denker

Inria Evref

The Problem

e Morph>>#minHeight

minHeight
"answer the receiver's minHeight"
~ self
valueOfProperty: #minHeight
ifAbsent: [2]

The Problem

e Morph>>#minHeight

This is not free

minHeight 4

"answer the recejvg¥

N self SN

valueOfPropah*®
ifAbsent: [2]

's minHeight"

L.
ety
]

v: #minHeight

The Problem

e all Objects understand #value, so we can write

minHeight
"answer the receiver's minHeight"
~ self
valueOfProperty: #minHeight
1fAbsent: 2

Compare Speed

m := Morph new.
[m minHeight] bench

~3 times faster

Compare Speed

“block execute” “constant execute”
block := [0]. const := 0.

[block value] bench [const valuel bench
“create and execute” “create and execute”
[[0] valuel bench [0 value] bench

1.4

6.3

What is going on?

Block: creation

e Compiler adds a CompiledBlock to the literal frame

* Block creation bytecode creates instance of
FullBlockClosure on the Stack

49
50
51
54
55

<4C> self

<20> pushConstant: #minHeight

<F9 01 00> fullClosure:[2] NumCopied: ©
<A2> send: valueOfProperty:ifAbsent:

<5C> returnTop

Blocks: execution

e Here is #value of BlockClosure

 Primitive that tells the VM to execute the CompiledBlock

value
"Artivat e the receivet reating a closure activation (MethodConte
hose closure is the receiver and whose caller the sender of thi
message. Supply the copied values to the activation as its copied
temps. Primitive. Essential.”

<primitive: 207>
numArgs ~= 0 ifTrue:

[self numArgsError: 8].
Acelf primitiveFailed

Constant: “creation”

e Compiler adds the constant to the literal frame

 pushLiteral: bytecode pushed it on the stack

49 <4C> self

50 <20> pushConstant: #minHeight

51 <21> pushConstant: 2

52 <A2> send: valueOfProperty:ifAbsent:
53 <5C> returnTop

Constant: execution

e Here is #value of Object

e Just a return self (fast!)

1 value

va'l.ue|

Agelf

So know we know why

 Block creation is slow as it creates an object
e vs just a pushLiteral

e #value is slow because it executes two method
e #value

e the CompiledBlock

How often do we use them?

allBlocks := Smalltalk globals methods
flatCollect: [:method | method ast blockNodes].
allBlocks size.

nonInlinedBlocks := allBlocks select: [:blockNode |
blockNode isInlined not].
nonInlinedBlocks size.

“the blocks are actually just constant"

constantBlocks := nonInlinedBlocks select: [:blockNode |
blockNode isConstant].

constantBlocks size.

How often do we use them?

N SN N 7/

x = [] Playground v |
> [B =

Doit Publish Bindings Versions Pages

1| allBlocks := Smalltalk globals methods flatCollect: [:method | method ast
blockNodes].

2| allBlocks size. "86885"

3

4 | nonInlinedBlocks := allBlocks select: [:blockNode | blockNode isInlined not].

5| nonInlinedBlocks size. "36661"

b

7| "the clean blocks are actually just constant"

8| constantBlocks := nonInlinedBlocks select: [:blockNode | blockNode +isConstant].

9| constantBlocks size. "2572"
x = O Inspector on an OrderedCollection [2572 items] (RB...
an OrderedCollection [2572 ... % (5 < [E: aRBBlockNode (RBBlockNodel... v (
Items Raw Breakpoints Meta Method Sourcer AST ASTDump Raw Breakpoints |
:In :Value %

1 b1nd1ngﬂf:lvarwame

279 RBBlockNode([nil) 2 Aself associationAt: varName ifAbsent:|
280 RBBlockNode([1)

281 RBBlockNode([:each | true]}

=207 DDElAaclrklosd 0T =20 14

What do we do?

e \We started to rewrite code like that in some cases to use
the #literal instead of [#literal]

e But it looks ugly!
 What about [:arg | #literal] ?

 There is no #value: implemented in Object!

Why not just compile
constants?

* Why not just change the compiler to compile a literal
instead of a constant block?

 \What about more than 1 arg?

* Mapping source <-> bc ?

Better Solution: Wrap it

We can create an object with the interface of
BlockClosure

It stores the constant as an ivar
Created by the compiler, stored in the literal frame

#value is a quick return of the ivar

But senders-of?

System scans the CompiledBlock for many queries (e.qg.
senders-of)

Solution: we compile a CompiledBlock even though we
never execute it

This way CompiledBlock has really the same APl as a
CleanBlock

It can even be a subclass !

Multiple Arguments

e Object just implements #value

 But our Wrapper can implement #value, #value:value: and
SO On

We need error handling

* When using value: on a 0 arg block, we need to raise
errors

e Therefore: subclasses

e |et’s look at the Hierarchy

The Compiler

e We just test for isConstant and then call
#visitConstantBlockNode:

visitConstantBlockNode: anBlockMode

"create statically a constant blockclosure (we support 8-3 arguments).
Constant blockclosures are specialized clean blocks: same creation speed,

| constantBlock compiledBlock |
constantBlock := ConstantBlockClosure

numArgs: anBlockNode numArgs

literal: anBIockNode constantValue.
compiledBlock := self translateConstantBlock: anBlockNode.
constantBlock compiledBlock: compiledBlock.
methodBuilder pushLiteral: constantBlock

Mapping works

e |et’s inspect all instances of CleanBlockClosure

x = [] Playground »
> B I B =

Dait Publish Bindings Versions Pages

1| ConstantBlockClosure allSubInstances

L

x = [] Inspector on Instance of RBMessageNode did not understand #sourceNodeForPC:

an OrderedCollection [2562 ... % () s [E acConstantBlockClosure ([n... Y () s

Items Raw Breakpoints Meta Method Source IR AST Raw Breakpoints Meta

— R

£ [l 1 removeParameter: key
[il] ,
[nil] 3 parameters ifNil: [* self].
[nil] 4 A self parameters removeKey: key ifAbsent: [nil]
[

[]
[]
[

=] on n B R =

It IS called a lot

e Add counter to #value of ConstantBlockClosure

o
=) value
Aliteral

What about CleanBlocks?

e | did not talk about CleanBlocks... as this is another talk
e ConstantBlocks are a subset of all clean blocks
e Same creation speed (created at compile time)

e But: Constant block *execution” is faster than that of a
clean block

We learned...

* Blocks are slow
 For Constant blocks we can easily do better

e Both Creation and Evaluation

 Constant Blocks are active by default in Pharo11

Questions?

* Blocks are slow
 For Constant blocks we can easily do better

e Both Creation and Evaluation

 Constant Blocks are active by default in Pharo11

