
Constant Blocks
Pharo11

Marcus Denker

Inria Evref

The Problem
• Morph>>#minHeight

minHeight
 "answer the receiver's minHeight"
 ^ self
 valueOfProperty: #minHeight
 ifAbsent: [2]

The Problem
• Morph>>#minHeight

minHeight
 "answer the receiver's minHeight"
 ^ self
 valueOfProperty: #minHeight
 ifAbsent: [2]

This is not free

The Problem
• all Objects understand #value, so we can write

minHeight
 "answer the receiver's minHeight"
 ^ self
 valueOfProperty: #minHeight
 ifAbsent: 2

Compare Speed

m := Morph new.
[m minHeight] bench

~3 times faster

Compare Speed

“block execute”
block := [0].

[block value] bench

“create and execute”

[[0] value] bench

“constant execute”
const := 0.

[const value] bench

“create and execute”

[0 value] bench

1.4

6.3

What is going on?

Block: creation

• Compiler adds a CompiledBlock to the literal frame

• Block creation bytecode creates instance of
FullBlockClosure on the Stack

49 <4C> self
50 <20> pushConstant: #minHeight
51 <F9 01 00> fullClosure:[2] NumCopied: 0
54 <A2> send: valueOfProperty:ifAbsent:
55 <5C> returnTop

Blocks: execution
• Here is #value of BlockClosure

• Primitive that tells the VM to execute the CompiledBlock

Constant: “creation”

• Compiler adds the constant to the literal frame

• pushLiteral: bytecode pushed it on the stack

49 <4C> self
50 <20> pushConstant: #minHeight
51 <21> pushConstant: 2
52 <A2> send: valueOfProperty:ifAbsent:
53 <5C> returnTop

Constant: execution
• Here is #value of Object

• Just a return self (fast!)

So know we know why

• Block creation is slow as it creates an object

• vs just a pushLiteral

• #value is slow because it executes two method

• #value

• the CompiledBlock

How often do we use them?
allBlocks := Smalltalk globals methods

flatCollect: [:method | method ast blockNodes].
allBlocks size.

nonInlinedBlocks := allBlocks select: [:blockNode |
blockNode isInlined not].

nonInlinedBlocks size.

“the blocks are actually just constant"
constantBlocks := nonInlinedBlocks select: [:blockNode |

blockNode isConstant].
constantBlocks size.

How often do we use them?

What do we do?

• We started to rewrite code like that in some cases to use
the #literal instead of [#literal]

• But it looks ugly!

• What about [:arg | #literal] ?

• There is no #value: implemented in Object!

Why not just compile
constants?

• Why not just change the compiler to compile a literal
instead of a constant block?

• What about more than 1 arg?

• Mapping source <-> bc ?

Better Solution: Wrap it

• We can create an object with the interface of
BlockClosure

• It stores the constant as an ivar

• Created by the compiler, stored in the literal frame

• #value is a quick return of the ivar

But senders-of?

• System scans the CompiledBlock for many queries (e.g.
senders-of)

• Solution: we compile a CompiledBlock even though we
never execute it

• This way CompiledBlock has really the same API as a
CleanBlock

• It can even be a subclass !

Multiple Arguments

• Object just implements #value

• But our Wrapper can implement #value, #value:value: and
so on

We need error handling

• When using value: on a 0 arg block, we need to raise
errors

• Therefore: subclasses

• Let’s look at the Hierarchy

The Compiler

• We just test for isConstant and then call
#visitConstantBlockNode:

Mapping works

• Let’s inspect all instances of CleanBlockClosure

It is called a lot

• Add counter to #value of ConstantBlockClosure

What about CleanBlocks?

• I did not talk about CleanBlocks… as this is another talk

• ConstantBlocks are a subset of all clean blocks

• Same creation speed (created at compile time)

• But: Constant block *execution* is faster than that of a
clean block

We learned…

• Blocks are slow

• For Constant blocks we can easily do better

• Both Creation and Evaluation

• Constant Blocks are active by default in Pharo11

Questions?

• Blocks are slow

• For Constant blocks we can easily do better

• Both Creation and Evaluation

• Constant Blocks are active by default in Pharo11

