Instrumentation &
the Pitfalls of
Abstraction

ESUG - 2023 - Lyon

quillermo.polito@inria.fr
@quillep

RSt

&i’lg’a/_ Evref

1 * Supported by AlaMVic Action Exploratoire INRIA

mailto:guillermo.polito@inria.fr

e . ~
. | | | . t @ . . f ; | B .J

q I e r O | D O I O I n rI u r = =
- \‘ b
" e W R
: 3 b

[] KJ »:fl')‘aur A \\g‘t‘:\
- it BnT .
,,,(:,‘:l” S 5
("H,.’T\?:‘N““ ¢
<

First: About Me

 Keywords: compilers, testing, test generation

 Ph.D.: Reflection, debloating, dynamic updates

* Interests: tooling, benchmarking, H45&, board games, concurrency

Talk to mel!
Evref

Or: guillermo.polito@inria.fr

2,244

mailto:guillermo.polito@inria.fr

Building Dynamic Analyses

 Dynamic call graphs

 Code coverage

e Profilers

e Number of calls

e Time

Method Wrappers, Objects as Methods

Wrappers to the Rescue

John Brant, Brian Foote, Ralph E. Johnson, and Donald Roberts

Department of Computer Science
University of Illinois at Urbana-Champaign
Urbana, IL 61801
{ brant, foote, johnson, droberts } @cs.uiuc.edu

Abstract. Wrappers are mechanisms for introducing new behavior that i1s exe-
cuted before and/or after, and perhaps even in lieu of, an existing method. This pa-
per examines several ways to implement wrappers in Smalltalk, and compares
their performance. Smalltalk programmers often use Smalltalk’s lookup failure
mechanism to customize method lookup. Our focus is different. Rather than
changing the method lookup process, we modify the method objects that the
lookup process returns. We call these objects method wrappers. We have used
method wrappers to construct several program analysis tools: a coverage tool, a
class collaboration tool, and an interaction diagramming tool. We also show how
we used method wrappers to construct several extensions to Smalltalk: synchro-
nized methods, assertions, and multimethods. Wrappers are relatively easy to build
in Smalltalk because it was designed with reflective facilities that allow program-
mers to intervene in the lookup process. Other laneuages differ in the deeree to

Remember Method Lookup

A - superclass |
instance of |
reference

A class |

- message | - {i

Objects as methods

% inherits from

A - superclass |
instance of ‘

reference
A class | of
: message | | g

»(receiver

;QVT— S— g -

Objects as methods + run:with:in:

% inherits from sl

S5

A - superclass |
instance of

T reference
A class |
. message | | {i

e

.
\ _gs"*
\ .
“
“

run:with:1n:

»(receiver

A ;Q~ — g !

How far can we get with
run:with:in: ?

A First Method Proxy

run: aSelector with: anArrayOfObjects 1n: aReceiver
| result |

selt logBefore: aSelector.

result := self
forwardMethod: originalMethod
withRecelver: aReceilver
withArguments: anArrayOfObjects.

selt logAfter: aSelector.

N pesult

Let’s instrument factorial

factorial

10

Let’s instrument factorial

factorial

11

Let’s instrument factorial

factorial factorial

12

Let’s instrument factorial

factorial factorial

13

Let’s get a bit more hardcore

Instrumenting Set>>#add:

15

Instrumenting Set>>#add:

" otherSet

16

Instrumenting Set>>#add:

trun:with:in:

17

Meta-Recursions

* [he instrumentation gets instrumented!

 And, with more complex
iInstrumentation, more difficult to debug

 The burden: on the developer

trun:with:in:

18

Solving Meta-Recursions

" otherSet

19

Solving Meta-Recursions

Instrumentation zone

— e

20

Solving Meta-Recursions

Instrumentation zone

|
,1
|

y run:with:in: —

21

And That’s not All

o Stack unwind (non-local returns, exceptions) pass around the logAfter:

e Concurrent access to our instrumentation zone?
* |lose logs
e break the instrumentation

 Maybe we can do some concessions: e.g., do not proxy the proxy...

This burden, Is on the developer

22

The Cost of Missing Abstraction

* [The language gives us only low-level instrumentation hooks
e #run:with:1n:
e #doesNotUnderstand:

e #cannotInterpret:

* |.e., they are at the wrong level of abstraction for proper instrumentation

Covering the GAP, is on the developer

23

The Proxy We Have

Instrumentation zone

24

The Stratified Proxy We Want

Instrumentation zone

. ~—_before: —— :
\ sesnnannnunnne " lOg *

\ handler) -

after: ¢

Infrastructure User concern

* logging?

* analysis?

e Meta-recursion

e Concurrency

25

Stratified Proxies

Proxies: Design Principle¢
Object-oriented Interce

Tom Van Cutsem *

Vrije Universiteit Brussel
Pleinlaan 2
Brussels, Belgium

tvcutsem@vub.ac.be

Abstract

Proxies are a powerful approach to implement meta-objects
in object-oriented languages without having to resort to
metacircular interpretation. We introduce such a meta-level
API based on proxies for Javascript. We simultaneously in-
troduce a set of design principles that characterize such APIs
in general, and compare similar APIs of other languages
in terms of these principles. We highlight how principled
proxy-based APIs improve code robustness by avoiding in-
terference between base and meta-level code that occur in
more common reflective intercession mechanisms.

Categories and Subject Descriptors D.3.2 [Language
Classifications]: Object-oriented languages

trol, |
ent vi
Virtual
out tk
addre
(emu
jects
futur

The ¢
of a proy
tion 4),
ples that
metapro,

Efficient Proxies in Smalltalk

Mariano Martinez Peck!?

Noury Bouraqadi”
Stéphane Ducasse!

Marcus Denker!
Luc Fabresse?

1RMoD Project-Team, Inria Lille-Nord Europe / Université de Lille 1
2Université Lille Nord de France, Ecole des Mines de Douai

marianopeck@gmail.com, {stephane.ducasse,marcus.denker}@inria.fr,
{noury.bouragadi,luc.fabresse}@mines-douai.fr

Abstract

A proxy object is a surrogate or placeholder that con-
trols access to another target object. Proxy objects are a
widely used solution for different scenarios such as remote
method invocation, future objects, behavioral reflection, ob-
ject databases, inter-languages communications and bind-
ings, access control, lazy or parallel evaluation, security,
among others.

Most proxy implementations support proxies for regular
objects but they are unable to create proxies for classes or
methods. Proxies can be complex to install, have a signif-
icant overhead, be limited to certain type of classes, etc.

Moreover, most proxy implementations are not stratified at
all and there 1< no <cenaration hetween nroxie< and handlere

systems [3, 20], future objects [23], behavioral reflection
[10, 15, 29], aspect-oriented programming [16], wrappers
[6], object databases [7, 19], inter-languages communica-
tions and bindings, access control and read-only execution
[1], lazy or parallel evaluation, middlewares like CORBA
[13, 17, 28], encapsulators [22], security [27], among oth-
ers.

Most proxy implementations support proxies for regular
objects (instances of common classes) only. Some of them,
e.g., Java Dynamic Proxies [11, 14] even requires that at
creation time the user provides a list of Java interfaces for
capturing the appropriate messages.

Creating uniform proxies for not only regular objects,
but also for classes and methods has not been considered.

Safe Method Proxies + Exact Method Profiler

 Method Proxies: https://github.com/pharo-contributions/MethodProxies

 Method Profiler: https://github.com/pharo-contributions/MethodProfiler

 + common instrumentation layer between proxies and meta-links !

27

https://github.com/pharo-contributions/MethodProxies/
https://github.com/pharo-contributions/methodprofiler

Let’s get a bit more hardcore
again

Let’s Instrument the Compiler

prt := PrfMethodProfiler new.

prt addPackage: OpalCompiler package.
oprt addPackage: RBParser package.

prf profile: | Integer recompile].

Let’s Instrument the Compiler

= new.
addPackage: package.
addPackage: package.
profile: [Inf=mad recompile].

Part 2: The Cost of Abstraction

Let’s Profile Fibonacci

>> benchFi1b

N oself < 2
ifTrue: [1]
ifFalse: |
(self-1) benchFib + (self-2) benchFib + 1]

Let’s Benchmark with Fibonacci

 Best case for proxy infrastructure
* NO exceptions
* nNo non-local return
* NO Meta-recursion

* NO concurrent usages by default

Let’s Benchmark with Fibonacci (i)

 (Good case to measure profiler/proxy overhead

 Simulate a big call-tree

e | eaves are fast paths (early exits)

* => high overhead expected

e fib(n) ~~ number of messages

Our Lower Bound is run:with:in:

run: aSelector with: anArrayOfObjects 1n: aReceilver

N self
forwardMethod: originalMethod
withRecelver: aReceiver
withArguments: anArrayOfObjects

35

run:with:in: Performance vs fib(x)

e ~25x slower !
 Seems faster for lower args

 Noise due to ys measures?

NO
m

Time (relative to no proxy)

36

N
-

—
m

—
-

m

- No Proxy
Unsafe

10 20 30
Fibonacci Argument

* Averages of 100 runs in pus. X =1 to: 28

run:with:1n: Performance vs Messages

. 25-
* Consistent ~25x overhead
= 20-
O
Q.
» Cries for language 2 15 8 No Proxy
IS Unsafe
. . =
Implementation 2 10-
: S
Improvement (1) B
v 5-
=
|_
O-I | | | |
0 300000 600000 900000 1200000

Messages

37 * Averages of 100 runs in ps.

™ No Proxy

The COSt Of Safety Unsafe

Safe

« Safe method proxies are ~3000x worse 4000-
* Non-clean closures =

| § 3000
 allocation Q.
@)
C

e thisContext reification ﬁ 2000-
>
 More messages (!) o

= 1000-
e #ensure: =
=

e meta-recursion control 01,
0 300000 600000 900000 1200000

* #tbefore, #after hooks Messages

38 * Averages of 100 runs in ps.

Can we get better?

 Down to ~400x just removing abstraction 3500-
__3000-

* |nlinings (!
* {0 remove messages
* to avoid blocks
» differentiate fast vs slow path

e concurrent, meta-recursive

N
U1
-
-

Time (relative to no proxy
—
On
o
()

39

™ No Proxy
Unsafe

Safe
Safe+Opt

0

300000 600000 900000 1200000

Messages

* Averages of 100 runs in ps.

Overhead of Call-Tree Construction

e 2 proxy variants
* Generic: handler object
 Customized: inlined handler
e 2 Instrumentation variants
* Online: build the call tree while executing
* Delayed: trace the minimum to build it in a post-process

« Comparison Baseline: safe+opt proxy with no instrumentation

40 * Averages of 100 runs in ps.

Call-tree construction

* Generic + Online was off the charts :)

« => Off the presentation too

* Delaying the analysis is the best

o Customization gets only slightly better

 removes 4 messages per call

41

[ime (relative to Generic Online Analysis)

i
N

—
-

Co

B Generic - No Instrumentation
Customized Proxy - Online Analysis
Generic Proxy - Delayed Analysis
Customized Proxy - Delayed Analysis

0

300000 600000 900000 1200000

Messages

* Averages of 100 runs in ps.

B Generic - No Instrumentation

Ca"-tree COnStrUCtion Customized Proxy - Online Analysis

Generic Proxy - Delayed Analysis
Customized Proxy - Delayed Analysis

i
N

* Generic + Online was off the charts :)

—
-

« => Off the presentation too

Co

* Delaying the analysis is the best

o Customization gets only slightly better

 removes 4 messages per call

[ime (relative to Generic Online Analysis)
(@)

0 300000 600000 900000 1200000m

Messages

42 * Averages of 100 runs in ps.

B Generic - No Instrumentation

Zcoming in Generic Proxy - Delayed Analysis

Customized Proxy - Delayed Analysis

—
O

1.8~
1.7-
1.6-
1.5-
1.4-
1.3~
1.2-
1.1-

* Delayed is ~1.25x proxy alone

Online Analysis)

eric

~1.25 * 400x (safety) ~= ~500x overhead

(over no instrumentation)

= E E E E E E E E E O E OB E N Sy E E AN =H =H H P/ E HE HE B B H i =m =B =B =E = = = I I I I I I = = = B B RSO m B I N =N = = = N

-
o

Time (relative to Gen

0 300000 600000 900000 120000C

Messages

43 * Averages of 100 runs in ps.

Profiling the Compiler — again

140.0-
: : 120.0- L
* Partial Instrumentaton e et -2 o
= 100.0- .
S
* Down from ~110x to ~12x S 800
£ 600
2 40.0-
E
S 2000 e
2 00{_—e— |
prf := PrfMethodProfiler new. L 2 2
prf addPackage: OpalCompiler package. P > <
prf addPackage: RBParser package. E = o
S

prf profile: [Integer recompile].

Customized+Delayed-

44

https://github.com/pharo-contributions/MethodProxies
https://qgithub.com/pharo-contributions/MethodProfiler

Takeaways

» Users need native language support for instrumentation

o Safe, stratified and **efficient**

* | ow-level hooks are not enough: they miss abstractions
e Think twice when writing your own proxy implementation!

* Think concurrency, think stack unwind, thing meta-recursions

z Université
1/’ lrrzia — =XTS] @ RISIAL LLL de Lille

/ 45 * Supported by AlaMVic Action Exploratoire INRIA

https://github.com/pharo-contributions/MethodProxies
https://github.com/pharo-contributions/methodprofiler

