Aglle Artificial Intelligence

Alexandre Bergel
RelationalAl, Switzerland

https://bergel.eu

Agile Artificial
Intelligence in
Pharo

Implementing Neural Networks,
Genetic Algorithms, and Neuroevolution

Alexandre Bergel

Apress-

Part 1: Neural network Part 2: Genetic algorithm

Q >
o= e

- H

Part 3: Neuroevolution
-

e

Part 1: Neural network Part 2: Genetic algorithm

-
Q N
o= e

- ".,__X/

Part 3: Neuroevolution
-

e

X1

T

X0 ——p - ——— Output

/ ’

X3 Perceptron

X1
w‘
Wo S
YO e i .~ ————»Output

e

X3 Perceptron

X1
w‘
Wo S
X0 ——— ey e, (O tpUt

e

X3 Perceptron

Output := (XIxW1) + (X2xW2) + (X3*xW3) > T ifTrue: [1] ifFalse: [0]

Perceptron @

« Great heauy metal concert this week end

= As a metal-lover, you would like to go

» [hree factors;

= X1:Is the weather good?
x X2: Does someone accompany me?
x : Can | go without a car?

Perceptron @

« Great heauy metal concert this week end

= As a metal-lover, you would like to go

= Three factors: VN v
x . s the weather good?
Wi =2 Wi =1
n : Does someone accompany me? W2 =6 W2 =1
W3 =2 W3 = 8
x : Can | go without a car?

AND Logical gate

X1 \ X1 X2 Output
. 0 0 0
1 1.9 _VOUJ[DUJ[0 1 0

X2 ——”””’)" - 1 0 0

Output := (XI1xW1) + (X2*W2) > T ifTrue: [1] ifFalse: [@]

OR Logical gate

X1

K X1 X2 Output
. 0 0 0

240) 17 ——— ()| 0 1 y

xz/ . 1 0 1

Output := (XI1xW1) + (X2*W2) > T ifTrue: [1] ifFalse: [@]

OR Logical gate

X1 \ X1 X2 Output
. 0 0 0
1 0.5 _>OUJ[DUJ[0 1 1

xz/ . 1 0 1

Output := (XI1xW1) + (X2*W2) > T ifTrue: [1] ifFalse: [@]

Perceptron learning algorithm

diff = desiredOutput - realQOutput
Ir =01
For all N:
weightN = weightN + (lr * inputN * diff)
bias = bias + (lr * diff)

lr 1s called the learning rate

learningCurveNeuron := OrderedCollection new.
0 to: 1000 do: [:nbOfTrained |

p := Neuron new.
p weights: #(-1 -1).
p bias: 2.

nbOfTrained timesRepeat: [
p train: #(0 @) desiredOutput: 0.
p train: #(@ 1) desiredOutput: 0.
p train: #(1 0) desiredOutput: 0.
p train: #(1 1) desiredOutput: 1 1.
res := ((p feed: #(0 0)) - @) abs +
((p feed: #(0 1)) - 0) abs +
((p feed: #(1 0)) - @) abs +
((p feed: #(1:1)) - 1) abs.
learningCurveNeuron add: res / 4.
1.
learningCurvePerceptron := OrderedCollection new.
0 to: 1000 do: [:nbOfTrained |
p-t= Neuron new.
p. step.
p weights: #(-1 -1).
p - bias: 2.
nbOfTrained timesRepeat: [
p train: #(0 @) desiredOutput:
p train: #(0 1) desiredOutput:
p train: #(1 @) desiredOutput: 0.
p train: #(1 1) desiredOutput: 1].
res := ((p feed: #(0 0)) — @) abs +
((p feed: #(0 1)) - @) abs +
((p feed: #(1 @)) - @) abs +
((p feed: #(1 1)) - 1) abs.
learningCurvePerceptron add: res / 4.
st
g := RTGrapher new.
d := RTData new.
d label: 'Sigmoid neuron'.

(SERSR)

CHAPTER 3

Neural Networks

The previous chapter covered the design and implementation of an individual neuron.
This chapter builds upon the effort initiated in previous chapters by connecting
multiple neurons. We provide a complete implementation of a neural network and a
backpropagation algorithm, which brings us to the core of the first part of the book.

3.1 General Architecture

An artificial neural network is a computing system inspired by the biological neural
networks found in animal brains. An artificial neural network is a collection of
connected artificial neurons. Each connection between artificial neurons can transmit
asignal from one to another. The artificial neuron that receives the signal can process
it, and then signal neurons connected to it. Artificial neural networks are commonly
employed to perform particular tasks, including clustering, classification, prediction,
and pattern recognition. In neural networks, just as with the perceptron and sigmoid
neuron, knowledge is acquired through learning.

Inputs Hidden layer ~ Output layer
Figure 3-1. Example of a neural network

© Alexandre Bergel 2020
A Bergel, Agile Artificial Intelligence in Pharo, https:/ /doi.org/10.1007/978-1-4842-5384-7 3

CHAPTER 4

Theory on Learning

Understanding the learning algorithm that’s used with neural networks involves a fair
dose of mathematical notations. This chapter details some relevant theoretical aspects
of the way that neural networks operate. We will therefore review the notions of loss
functions and gradient descent. Note that this chapter is by no means a complete
description of how networks learn. As indicated at the end of this chapter, many other
people have done an excellent job of ibing the i dation of
learning and optimization mechanisms, Instead, this chapter is meant to back up some
aspects of the implementation explained in the previous chapters, with the assumption
that you are comfortable with basic differential calculus.

You can safely skip this chapter if the theory behind neural networks does not

interest you.
This chapter intensively uses Roassal to visualize data. You therefore need to have it
loaded, as indicated in the previous chapters, in order to run the scripts in this chapter.

4.1 Loss Function

A network needs to learn in order to reduce the amount of errors it makes when making
aprediction. Such a prediction could be used either to classify data or to run regression
analysis. It is therefore essential to have a way to measure the errors made by a network.
This is exactly what a loss function does.

Aloss function is a measure of the error made by a particular model. The loss
function is also commonly called the error function or the cost function. To illustrate the
use and need of a loss function, let’s consider the following problem: for a given set of
points, what is the straight line that is the closest to these points?

Consider a set of four points:

points :={(1 @ 3.0). (3 ©5.2). (2 @4.1). (4 €7.5)}.

© Alexandre Bergel 2020
A. Bergel, Agile Artificial Intelligence in Pharo, https://doi.org/10.1007/978-1-4842-5384-7_4

CHAPTER 5

Data Classification

Neural networks have an incredibly large range of applications. Classifying data is a
prominent one, and this chapter is devoted to it.

5.1 Training a Network

In the previous chapter, we saw that we can obtain a trained neural network to express
the XOR logical gate. In particular, we saw the following script:

n := NNetwork new.
n configure: 2 hidden: 3 nbOfOutputs: 1.

20000 timesRepeat: [
n train: #(0 0
n train: #(0 1,
n train: #(1 0
n train: #(1 1

desiredOutputs: #(0).
desiredOutputs: #(1).
desiredOutputs: #(1).
desiredOutputs: #(0).

)
)
)
)

After evaluating this script, the expression n feed: #(1 0) evaluates to
#(0.9530556769505442), which s an array having an expected float value close to 1.
If we step back a bit, we see that the script is actually very verbose. For example, why
should we manually handle the repetition? Why is the message train: desiredOutputs:
sent so many times? We can greatly simplify the way networks are trained by providing a
bit of infrastructure.

Consider the following method:
NNetwork>>train: train nbEpochs: nbEpochs

"Train the network using the train dataset."
| sumError outputs expectedOutput epochPrecision t |

© Alexandre Bergel 2020
A Bergel, Agile Artificial Intelligence in Pharo, hitps:/ /doi.org/10.1007/978-1-4842-5384-7_5

CHAPTER 3

Neural Networks

‘The previous chapter covered the design and implementation of an individual neuron.

This chapter builds upon the effort initiated in previous chapters by connecting

multiple neurons. We provide a complete implementation of a neural network and a

backpropagation algorithm, which brings us to the core of the first part of the book.

3.1 General Architecture

An artificial neural network is a computing system inspired by the biological neural
networks found in animal brains. An artificial neural network is a collection of
connected artificial neurons. Each connection between artificial neurons can transmit
asignal from one to another. The artificial neuron that receives the signal can process
it, and then signal neurons connected to it. Artificial neural networks are commonly
employed to perform particular tasks, including clustering, classification, prediction,

and pattern recognitior
neuron, knowledge is a

In
Figure 3-1. Example

© Alexandre Bergel 2020
A Bergel, Agile Artificial Inteli

CHAPTER 6

A Matrix Library

In the previous chapters, we presented an implementation of a neural network made of
layers and neurons (i.e., instances of NeuronLayer and Neuron). Although instructive,
that implementation does not reflect classical ways of implementing a neural network.
Alayer can be expressed as a matrix of weights and a vector of biases. This is how most
libraries that build neural networks (e.g., TensorFlow and PyTorch) actually operate.

This chapter lays out a small library to build and manipulate matrices. This chapter
is an important foundation for the subsequent chapter, which is about how networks
can be implemented using matrices. Matrices are a particular data structure for which
operations cannot efficiently be implemented in Pharo. We will write these costly
operations in C but make them accessible within Pharo.

In addition to defining a matrix library, this chapter highlights one particular
aspect of Pharo, which is the use of Foreign Function Interface (FFI). This is a relevant
mechanism whenever one wishes to make Pharo use external libraries written using the
Cor C++ programming languages. For example, TensorFlow is written in C++, which
may be accessed from Pharo using the very same technique presented in this chapter.

This chapter is long and contains many inter-dependent methods. The chapter
needs to be fully i

before being

6.1 Matrix Operations in C

Pharo does not provide built-in features to manipulate matrices. Although we could
implement them in Pharo, it would suffer from very poor performance. Instead, we will
code a smalllibrary in C to support the elementary C operations. Create a file named
matrix. c with the following C code:

void dot(double *m1, int m1_nb_rows, imt mi_nb_columns, double *m2,
int m2_nb_rows, int m2_nb_columns,
double *res) {

© Alexandre Bergel 2020
A Bergel, A ificial

Pharo, hitps:

CHAPTER 4

Theory on Learning

Understanding the learning algorithm that’s used with neural networks involves a fair
dose of mathematical notations. This chapter details some relevant theoretical aspects
of the way that neural networks operate. We will therefore review the notions of loss
functions and gradient descent. Note that this chapter is by no means a complete
description of how networks learn. As indicated at the end of this chapter, many other

people have done an excellent job of the of

learning and optimization mechanisms. Instead, this chapter is meant to back up some
aspects of the implementation explained in the previous chapters, with the assumption
that you are comfortable with basic differential calculus.

You can safely skip this chapter if the theory behind neural networks does not
interest you.

This chapter intensively uses Roassal to visualize data. You therefore need to have it
loaded, as indicated in the previous chapters, in order to run the scripts in this chapter.

Loss Function

work needs to learn in order to reduce the a
diction. Such a prediction could be used eitl
ssis. It is therefore essential to have a way to

CHAPTER 7

is exactly what a loss function does.
loss function is a measure of the error made
ion is also commonly called the error functi
nd need of a loss function, let's consider the
s, what is the straight line that is the closest
‘onsider a set of four points:

ts :={(1 @ 3.0). (3 @5.2). (2 @ 4.1)

Matrix-Based Neural
Networks

CHAPTER 5

Data Classification

Neural networks have an incredibly large range of applications. Classifying data is a
prominent one, and this chapter is devoted to it.

5.1 Training a Network

In the previous chapter, we saw that we can obtain a trained neural network to express
the XOR logical gate. In particular, we saw the following script:

n := NNetwork new.
n configure: 2 hidden: 3 nbOfOutputs: 1.

20000 timesRepeat: [
n train: #(0 0) desiredOutputs: #(0).
n train: #(0 1) desiredOutputs: #(1).
iiredoutputs: #(1).
iiredOutputs: #(0).

the expressionn feed: #(1 0) evaluates to

1is an array having an expected float value close to 1.

: the script is actually very verbose. For example, why
repetition? Why is the message train: desiredOutputs:
atly simplify the way networks are trained by providing a

Jochs: nbEpochs
using the train dataset.”
expectedOutput epochPrecision t |

This chapter revises the implementation of our neural network. In this revision,

andre Bergel 2020
sel, Agile Artificial Intelligence in Pharo, hitps://doi.org/1

our network will use matrices to compute the forward and backward propagation
algorithms. Overall, our matrix-based implementation is composed of two classes,

haro, hitps:/ /doi.org/10.1007/978-1-4842-5384-7 5

NMLayer and NMNetwork. Since most of the computation is delegated to the matrix library

we defined in the previous chapter, our new version of the neural network is rather light

interms of code.

7.1 Defining a Matrix-Based Layer

A neural network is composed of layers. We describe a layer as an instance of the
NMLayer class, defined as follows:

Object subclass: #NMLayer
instanceVariableNames: 'w b delta output previous next lr

numberOfExamples'
classVariableNames:

package: 'NeuralNetwork-Matrix'

The NMLayer class does not contain neurons, as we saw in our first implementation.
Instead, a matrix describing weights is used and kept in the w variable, and another

matrixis used to keep the bias vector, kept in the bvariable.

The initialization of a layer simply consists of setting the default learning rate:

NMLayer>>initialize
super initialize.
Ir := 0.1

© Alexandre Bergel 2020
Bergel, Agile A L Intellige

in Pharo, hty

Part 1: Neural network Part 2: Genetic algorithm

Q >
o= e

- H

Part 3: Neuroevolution
-

e

Part 1: Neural network Part 2: Genetic algorithm

-
Q N
o= e

- ".,__X/

Part 3: Neuroevolution
-

e

“One general law, leading to the advancement of all organzc beings,
namely, vary,

— Charles Darwin

“Guess the 3-letter
word | have in mind’”

o
4

D 4

Secret word:

1%

0(0)71%

7

“Guess the 3-letter 1
word | have in mind 502"
=, P a4
QVP/ O %K(" PO F
: ttgazu D 4
1

Secret word:

Secret word:;

gaz
Ccow

61074

Best score = 1

Secret word:;

gaz gow
COoOwW Z
pPOZ PDOW

Best score = 1 Best score = 2

Secret word:;

gaz gow goz

Ccow Z

Oz DOW POz
Best score = 1 Best score = 2 Best score = 3

stringToFind := 'cat'.
g := GAEngine new.
g populationSize: 1000.
g numberOfGenes: stringloFind size.
g createGeneBlock: [:rand :index :ind | ($a to: $z)
atRandom: rand].
g fitnessBlock: [:genes |
(stringToFind asArray with: genes collect: [:a :b |
a=>b ifTrue: [1] ifFalse: [@] 1) sum].
g run.
g visualize open

Muscle
tension

Muscle length: = Muscle force

x - 0 Playground .

Page ~= aGAEngine
B STICCCTUT: (UATUUT Iameritoe teC CTorm rmewy s A View Logs Raw Meta o Q @ & -=
g mutationRate: 0.02.

g endForMaxNumberOfGeneration: 128.
populationSize: 100.
numberOfGenes: numberOfMuscles * 5.
createGeneBlock: [:r :index | mg valueForIndex: index].
fitnessBlock: [:genes
creature := CCreature new configureBall: numberOfNodes. Fitness
creature materialize: genes.
creature resetPosition.

c := CWorld new.
c addCreature: creature.
1 to: 25 by: 3 do: [:x | 2500.0
c addPlatform: (CPlatform new height: 20; width: 80; translateTo: x *
100 @ -10).
c addPlatform: (CPlatform new height: 20; width: 80; translateTo: x *
100 + 50 @ -30). 1500.0
c addPlatform: (CPlatform new height: 20; width: 80; translateTo: x *
100 + 100 @ -50).
c addPlatform: (CPlatform new height: 20; width: 80; translateTo: x * .
100 + 150 @ -70).
W«/\/&;—A/\'

v

09 09 09 09

|

|

c addCreature: creature.

3000 timesRepeat: [c beat]. 000 3 2 o4 el B 128
creature position x o Generation
1.
g run.
creature := CCreature new configureBall: 10.
creature materialize: g result.
S e L B Best fitness
IStos 2L\by: 3 do: [:x |
c addPlatform: (CPlatform new height: 20; width: 80; translateTo: x * 100
e B Worse fitness
c addPlatform: (CPlatform new height: 20; width: 80; translateTo: x * 100
+ 50 @ -30).
c addPlatform: (CPlatform new height: 20; width: 80; translateTo: x * 100 Averagce fithess
+ 100 @ -50). ~
c addPlatform: (CPlatform new height: 20; width: 80; translateTo: x * 100
+ 150 @ -70).
1]
c addCreature: creature.
c open

£ Pharo Tools R Roassal | System Debugging Windows Help

x -0 Playground S

Page > = ~= aGAEngine x 7
creature resetPosition. ~ View Logs 'Raw | Meta Q. Q @ &-=
c := CWorld new. X
c addPlatform: (CPlatform new height: 20; width: 80; translateTo: 100 @

-10). Fitness
c addPlatform: (CPlatform new height: 20; width: 80; translateTo: 400 @ o

-10). 1500.0
c addPlatform: (CPlatform new height: 20; width: 80; translateTo: 700 @

-10). _‘
c addPlatform: (CPlatform new height: 20; width: 80; translateTo: 1000 @ o0

-10).

c addCreature: creature.
3000 timesRepeat: [c beat]
creature position x
] value: (g logs at: 128) fittestIndividual genes.

c := CWorld new.
creature := CCreature new color: Color red; configureBall: 10.
creature materialize: g logs last fittestIndividual genes.

c addCreature: creature. t :
!

500.0 0 Y b4 { 128

creature := CCreature new color: Color yellow darker darker; configureBall: 10. - i
Generation

creature materialize: (g logs at: 50) fittestIndividual genes.
c addCreature: creature.

creature := CCreature new color: Color blue darker darker; configureBall: 10.
creature materialize: (g logs at: 100) fittestIndividual genes.
c addCreature: creature.

, B Best fithess
creature := CCreature new color: Color green darker darker; configureBall: 10.
creature materialize: (g logs at: 90) fittestIndividual genes.
c addCreature: creature. . Worse fitness
addPlatform: (CPlatform new height: 20; width: 80; translateTo: 100 @ -10).
addPlatform: (CPlatform new height: 20; width: 80; translateTo: 400 @ -10).
addPlatform: (CPlatform new height: 20; width: 80; translateTo: 700 @ -10).
addPlatform: (CPlatform new height: 20; width: 80; translateTo: 1000 @ -10).
open

Average fitness

lgb L) Azl (g) Ta)

CHAPTER 9

Genetic Algorithms
in Action

This chapter illustrates the use of genetic algorithms by solving a number of difficult
algorithmic problems. Most of the problems presented in this chapter involve some
arithmetic operations and therefore have a mathematical flavor.

9.1 Fundamental Theorem of Arithmetic

A prime number is a whole number greater than 1 whose only factors are 1 and itself. For
example, 7 is a prime because it can only be divided by 7 and 1. The number 10 is not a
prime because it can be divided by 2 and 5—two prime numbers.

In number theory, there is a theorem called the fundamental theorem of arithmetic,
which states “any integer greater than 1 is either a prime number itself, or can be written
as a unique product of prime numbers.” Note that this representation is unique, except
for the order of the factors. For example, the number 345 is a multiplication of factors
3+5+23. Finding this list of factors is computationally expensive. We will use genetic
algorithms to identify the prime factors of any given number. As such, a gene will
represent a prime number factor.

Itis relevant to note that the number of factors depends on the number to be
factored out. For example, the number 345 has three factors (3, 5, and 23), whereas
the number 788,389 has four factors since 788,389 = 7 * 41 %41 * 67. In the genetic
algorithm we presented in the previous chapter, all the individuals have the exact same
number of genes. How do we represent an arbitrary number of genes then? One way that
fits well with our situation is to consider 1 as a possible factor. Assuming each individual
has 10 genes, the factors of 345 can be encoded with the values 3, 5, 23, and seven times
the factor 1. The solution will then be the factors contained in an individual for which we
ignore the value 1.

© Alexandre Bergel 2020
A. Bergel, Agile Artificial Intelligence in Pharo, hitps://doi.org/10.1007/978-1-4842-5384-7_9

CHAPTER 10

The Traveling Salesman
Problem

The Traveling Salesman Problem (TSP) is a classical algorithm problem. It consists of
identifying the shortest possible route between several connected cities. Not only is
the problem relevant from an algorithmic point of view, but it also has many concrete
ications, like microchi ing, as you will shorty see.
The chapter incrementally builds a non-trivial solution to the problem using a
genetic algorithm. The chapter begins with a naive approach to a robust, practical way of
solving it.

10.1 lllustration of the Problem
©

Figure 10-1. Setup of the Traveling Salesman Problem

®

Consider the example given in Figure 10-1. The figure shows four cities located ina
horizontal diamond. Each city has a 2D coordinate and is therefore located in a two-
dimensional plane. Assuming the traveler begins their journey at City A, many paths are
possible to visit all the cities.

© Alexandre Bergel 2020
A Bergel, Agile Artifcial Intelligence in Pharo, https://doi.org/10.1007/978-1-4842-5384-7_10

CHAPTER 11

Exiting

Genetic algorithms are «
This chapter applies a g
asimple situation (a rot
the distance between th
ina randomly generatec

11.1 Encodin(

We will model the maze
are fixed positions. The
at the bottom-right corr

Our robot will follov
north, south, west, or ea

Applied to our gene
at the maze entrance. TI
encoded in the genes, a:
exit. The genetic algorit!
is getting closer to the e:

11.2 Robot D¢

The very first stepistor
knows its position and t

Object subclass: #GA
instanceVariable
classVariableNam
package: 'Robot’

© Alexandre Bergel 2020
A Bergel, Agile Artificial Intelli

a Maze

CHAPTER 11 EXITING A MAZE

map := GARobotMap mew fillWithWalls: 80.
Tobot := GARobot new.

Tobot map: map.

g := GAEngine new.

g endIfNoImprovementFor: 5.

g number0fGenes: 100.

g populationSize: 250.

g createGeneBlock: [:rand :index :ind | #($N $S $W $E) atRandom: rand].
g minimizeComparator.

fitnessBlock: [:genes |
path penalty |

path := robot followOrders: genes.

penalty := path size / 2.

(xobot position dist: map exitPosition) + penalty].
g run.
map drawRobotPath: (robot followOrders: g result).
map open

ATlepRSRTIIIH

Figure 11-3. Short robot footprint

234

CHAPTER 9

Genetic Algorithms
in Action

This chapter illustrates the use of genetic algorithms by solving a number of difficult
algorithmic problems. Most of the problems presented in this chapter involve some
arithmetic operations and therefore have a mathematical flavor.

9.1 Fundamental Theorem of Arithmetic

A prime number is a whole number ereater than 1 whose onlv factors are 1 and itself. For
example, 7 is a prime becau
prime because it can be divi

In number theory, there
which states “any integer gri
as a unique product of prim CHAPTER 12
for the order of the factors. I
3%5+23. Finding this list of f¢
algorithms to identify the p
represent a prime number

Itis relevant to note that
factored out. For example, t
the number 788,389 has fou
algorithm we presented in t
number of genes. How do w

Building Zoomorphic

Creatures

Genetic algorithms are often used to simulate aspects of how biological individuals

fits well with our situation i
has 10 genes, the factors of :
the factor 1. The solution wi
ignore the value 1.

behave. This chapter is about artificial life. It defines and creates what we call

tures. We refer to ic creatures as virtual beings that own

particular traits of biological creatures. As such, a zoomorphic creature can be
considered a small digital animal.

© Alexandre Bergel 2020

A Bergel, Agile Artificial Intelligence

Figure 12-1. Example of a creature

Figure 12-1 shows the example of such a creature standing on a platform. A creature
is made of join points and muscles. Each muscle has two extremities and each extremity

is connected to a join point. Our creatures are boneless and join points connect muscles.

Ajoin point hosts the muscle extremities.

Amuscle is a complex element in our model. Each muscle oscillates and has
a strength, which makes it able to resist external forces (e.g., gravity or a reaction from a
platform). Muscle oscillation is regulated by an internal clock, proper to each muscle.
A creature is subject to (i) gravity and (ii) the reaction force from the platform on which
the creature stands. Muscles have no weight, but a join point has a weight.

© Alexandre Bergel 2020
A. Bergel, Agile Artificial Intelligence in Pharo, hitps://doi.org/10.1007/978-1-4842-5384-7_12

CHAPTER 10

The Traveling Salesman
Problem

The Traveling Salesman Problem (TSP) is a classical algorithm problem. It consists of
identifying the shortest possible route between several connected cities. Not only is
the problem relevant from an algorithmic point of view, but it also has many concrete

like ing, as you will shorty see.
‘The chapter incrementally builds a non-trivial solution to the problem using a
genetic algorithm. The chapter begins with a naive approach to a robust, practical way of

solving it.

10.1 lllustration of *-~ ™~-**-—

CHAPTER 13
Figure 10-1. Setup of the Trav

Consider the example given in Fig
horizontal diamond. Each city ha
dimensional plane. Assuming the
possible to visit all the cities.

Evolving Zoomorphic
Creatures

The previous chapter presented the infrastructure that models and builds zoomorphic
creatures. However, so far, the creature cannot do much: it stands where it was originally
located, and we are lucky when it does not fall on its side. This chapter makes the

© Alexandre Bergel 2020

A. Bergel, Agile Artificial Intelligence in Pha creatures evolve to accomplish a displacement task, such as moving toward a particular

direction or passing through some obstacles.

13.1 Interrupting a Process

Before jumping in and running the genetic algorithm, it is important to highlight an

language and

aspect of the Pharo
Making creatures evolve is a very costly operation. Depending on your hardware
configuration, you may have to let your computer evolve the creatures for hours. As such,
most of the scripts in this chapter require a long time to complete. You should be familiar
with the way that Pharo can be interrupted by pressing the Cmd and . (period) keys on
MacOSX. On Windows or Linux, you use the Altand . keys.
Interrupting Pharo opens up a Pharo debugger. When this happens, the execution
has been interrupted. You may then do either of the following:
Evaluate the code (e.g, to accurately monitor the computation
progresses), which would happen in the debugger itself or in the
playground
« Simply resume the computation by clicking Proceed
Closing a debugger will end the ongoing computation. Keeping the debugger open
means you can always resume the execution you interrupted by clicking Proceed.

© Alexandre Bergel 2020
A Bergel, Agile Artificial Intelligence in Pharo, https:/ /doi.org/10.1007/978-1-4842-5384-7_13

CHAPTER 11

Exiting

Genetic algorithms are (
This chapter applies a g
asimple situation (a rot
the distance between th
ina randomly generatec

11.1 Encodin(

We will model the maze
are fixed positions. The
at the bottom-right corr

Our robot will follov
north, south, west, or ea

Applied to our gene
at the maze entrance. TI
encoded in the genes, a
exit. The genetic algorit!
is getting closer to the e:

11.2 Robot De

The very first stepistor
knows its position and t

Object subclass: #GA
instanceVariable
classVariableNam
package: 'Robot’

© Alexandre Bergel 2020
A Bergel, Agile Artificial Intelli

a Maze

CHAPTER 11 EXITING A MAZE

map := GARobotMap mew fillWithWalls: 80.
Tobot := GARobot new.

Tobot map: map.

g := GAEngine new.

g endIfNoImprovementFor: 5.

g number0fGenes: 100.

g populationSize: 250.

g createGeneBlock: [:rand :index :ind | #($N $S $W $E) atRandom: rand].
g minimizeComparator.

fitnessBlock: [:genes |
| path penalty |
path := robot followOrders: genes.
penalty := path size / 2.
(xobot position dist: map exitPosition) + penalty].
g run.
map drawRobotPath: (robot followOrders: g result).
map open

ATlepRSRTIIIH

Figure 11-3. Short robot footprint

234

Part 1: Neural network Part 2: Genetic algorithm

Q >
o= e

- H

Part 3: Neuroevolution
-

e

Part 1: Neural network Part 2: Genetic algorithm

-
Q N
o= e

- ".,__X/

Part 3: Neuroevolution
-

e

Deep learning

= Greedy in properly formed training data
»= [E.g., distinguishing a 8 from a ® requires 2000 pictures

= Not really the way humans learn

Neuroevolution

n IS called neuroevolution

= |n practice:

CHAPTER 14

Neuroevolution

This chapter covers the third and last part of the book. The book started with the
topic of neural networks, which are i for the

brain. Subsequently, the book covered genetic algorithms, computational
simulations of species evolution. After these two parts, the question that may

naturally be asked is: Is it possible to evolve neural networks in a fashion similar
to how our biological brains went through evolution over thousands of years? The
answer is yes, and this evolution mechanism is the topic of this third and last part
of the book. Neuroevolution is a form of artificial intelligence that combines neural
networks and genetic algorithms.

After giving some theoretical background on different learning mechanisms, this
chapter explores a simple i ism, called i

14.1 Supervised, Unsupervised Learning, and
Reinforcement Learning

‘When we discussed how a neural network operates, we learned that a neural network
requires examples. In order for a neural network to learn classification patterns in a
dataset (as with the Iris dataset), the dataset has to be labeled for the neural network
to identify those patterns. In the case of the Iris dataset, each flower description
accompanied the name of the flower. We referred to the flower name as the label of an
example. Learning from a dataset that contains labels is called supervised learning: the
machine learning algorithm learns patterns from labeled data. Supervised learning is
characterized by operating on labeled data.

In many situations, obtaining a labeled dataset is not problematic. For example,
Facebook has a large dataset of labeled pictures. Each time you label a friend in a picture,
you provide an example that Facebook can use to improve its models. Supervised
learning finds patterns in datasets for which we have the right answer, the label.

© Alexandre Bergel 2020
A. Bergel, Agile Artificial Intelligence in Pharo, https:/ /doi.org/10.1007/978-1-4842-5384-7_14

CHAPTER 15

Neuroevolution with NEAT

NEAT is an algorithm that builds neural networks following an incremental and
evolutionary process. It uses a genetic algorithm to evolve networks. In the very

early generations, neural networks are very simple, composed of a few nodes and
connections. However, complexity is added in each generation. NEAT supports a
number of mutations, and these mutations may add new nodes or new connections. As
such, networks can only become more complex over time.

NEAT was proposed in 2002 by Kenneth 0. Stanley and Risto Miikkulainen in their
article titled, “Evolving Neural Networks Through Augmenting Topologies,” published
by MIT Press. Readers who wish to know more about the design decisions of the
algorithm are welcome to read the article. The article is accessible, and it can be easily
found on the web.

This chapter focuses on the implementation of the NEAT algorithm. NEAT builds
neural networks made of nodes and connections. This chapter is self-contained. All the
code provided in this chapter is meant to be kept in a package called NEAT and each
class is prefixed with the two letters, NE.

Note that we slightly simplify the original NEAT algorithm to keep the chapter size
under control. In particular, we use a simplified strategy to create species and evaluate
similarities between individuals.

This chapter begins with some theoretical background before diving into the NEAT
implementation.

15.1 Vocabulary

This chapter is about using a genetic algorithm to evolve neural networks. Although
we have detailed these two concepts in previous chapters, the NEAT algorithm, as
originally formulated by Kenneth and Risto in 2002, comes with its own terminology.

© Alexandre Bergel 2020
A. Bergel, Agile Artificial Intelligence in Pharo, https:/ /doi.org/10.1007/978-1-4842-5384-7_15

CHAPTER 16

The MiniMario
Video Game

This chapter builds a small video game inspired by Nintendo’s Mario Bros. Our version
of the game is a simplification of the real Mario Bros game. The purpose of this chapter
is to provide a solid and realistic base on which we can build an intelligent artificial
player. The goal of this chapter is not to provide a wonderful gaming experience. Instead,
the game is about providing a challenging scenario for exercising the NEAT algorithm
covered in the previous chapter. Our game, which we call MiniMario, has the following
characteristics:

« The game has one hero, Mario, located at the center of the screen.

* Mario can be controlled by using the keyboard or by an artificial
player.
Mario can move left, right, and jump.
‘The map is composed of bricks and tubes, which Mario cannot go
through.
The map is populated by monsters and Mario must avoid them or the
game ends.
Monsters walk in one direction until they bump into a brick or a tube,
in which case, the walking direction changes to the opposite.
The goal of the game is to bring Mario to the right-most location of
the map.

This game is driven by a global pulse, which we call a beat. A beat represents an

indivisible time unit. At each beat, Mario and the monster may move by one cell. Note
that for the sake of simplicity, a monster cannot jump.

© Alexandre Bergel 2020
1, Agile A in Pharo, bty

x = O a TRMorph(757707264)

MNWorld new seed: 7; open

MNWorld new showCompleteMap

Fern 24 species 14 genome 14
Fitnhes=s: £9L51 Max Fitness:

& =2 g R)] ke =TT
2
aOFE
3 X
oy
0
Tonm

-

neat := NEAT new.

neat numberOfInputs: 121.

neat numberOfOutputs: 3.

neat populationSize: 200.

neat fitness: [:ind |
w := MNWorld new.
w mario: (MNAIMario new network: ind).
450 timesRepeat: [w beat |.
w mario position x].

neat numberOfGenerations: 160.

neat run.

w := MNWorld new.
w mario: (MNAIMario new network: neat result).
w open

All the code Is avallable for free

Metacello new
baseline: 'AgileArtificiallntelligence’;
repository: ‘'github://Apress/agile-ai-in-pharo/src';
load.

What the book

= Complex deep learning models
= [ransformers
= | anguage models

= |mage recognition

What the book

x in Genetic Algorithms
= |ntroduce you to the
= Give

= [Does not require a strong mathematical backgrouna

Future plan

= Update book with
= Extract the Neural Network chapters into a separate book (maybe)
n about zoomorphic creatures

n Neuroevolution

Agile Artificial Agile
Intelligence in Visualization
Pharo with Pharo

Implementing Neural Networks, fi e Visual S
Genetic Algorithms, and Neuroevolution Crafting Interactive Visual Support
— Using Roassal

Alexandre Bergel =
. Alexandre Bergel

Apress’

Apress’

Agile Artificial Agile
Intelligence in Q Visualization
Pharo with Pharo

Implementing Neural Networks,

Genetic Algorithms, and Neuroevolution Crafting Interactive Visual Support
— Using Roassal

Alexandre Bergel -

Alexandre Bergel

Apress’

Apress’

