
© Domenico Cipriani, 2023

MUSIC

With PHARO




© Domenico Cipriani, 2023

MUSIC with PHARO
•Pharo as an OSC/MIDI performer/sequencer/controller.


•Pharo as a language for live-coding/ programming -music-on-the-fly.


•Pharo does not generate any sound (for now).


•Pharo as a client for a MIDI instrument (internal/external) or for an OSC audio server (i.e. 

SuperCollider, PureData, ChucK, Max/MSP, Kyma)

OSC
https://github.com/Ducasse/OSC

Pharo-Sound
https://github.com/pharo-contributions/pharo-sound

MIDI connections implementationsOSC implementation

LiveCoding Package
https://github.com/lucretiomsp/PharoLiveCoding

Domain Specific Dialect

https://github.com/lucretiomsp/PharoLiveCoding
https://github.com/lucretiomsp/PharoLiveCoding
https://github.com/lucretiomsp/PharoLiveCoding


© Domenico Cipriani, 2023

MUSIC with PHARO

Pharo-Sound
https://github.com/pharo-contributions/pharo-sound

MIDI connections implementations

PortMidi C external cross-platform library implemented in 
Pharo using the Unified FFI package by Antoine Delaby and 
Santiago Bragagnolo 

Full MIDI functionalities in Pharo

Connect to external MIDI hardware or to a virtual MIDI bus,

IAC Driver on Mac or MIDI Yoke* on Windows (*not native)

It is used by the LiveCoding Package for MIDI connections

Transform Pharo into a MIDI sequencer

Allows to create custom GUI MIDI controllers

The MIDI (Musical Instrument Digital Interface) protocol, developed collaboratively by Dave Smith, Chet Wood, and Ikutaro 
Kakehashi in 1983, is a standardised communication protocol used in electronic music equipment. It facilitates the 
transmission of musical information like notes, control parameters, and timing data between different devices such as 
synthesizers, computers, and controllers. 

https://github.com/lucretiomsp/PharoLiveCoding


© Domenico Cipriani, 2023

MUSIC with PHARO

Open Sound Control  implementation for Pharo, Originally developed 
and license under MIT by Markus Gaelli and then Simon Holland. Now 
cleaned and maintained by S. Ducasse. 

Necessary dependency of the LiveCoding Package.

Send and receive OSC messages via UDP

OSC OpenSoundControl (OSC) is a data encoding for realtime message 
communication among applications and hardware. Developed by Matt 
Wright and Adrian Freed at CNMAT

Highly accurate, lightweight, low latency, widespread

OSC
https://github.com/Ducasse/OSC

OSC implementation

https://github.com/lucretiomsp/PharoLiveCoding


© Domenico Cipriani, 2023

MUSIC with PHARO

LiveCoding Package
https://github.com/lucretiomsp/PharoLiveCoding

Domain Specific Dialect

Play sounds from an audio server or MIDI instrument

Create, transform and manipulate Rhythms

Create, transform and manipulate melodies, chords and arpeggio

Create custom OSC controllers

Can also be used and expanded to be used (via OSC or MIDI) with 
software for visual arts such as Processing, Touch Designer, Hydra 

LiveCoding Package
https://github.com/lucretiomsp/PharoLiveCoding

Domain Specific Dialect

https://github.com/lucretiomsp/PharoLiveCoding
https://github.com/lucretiomsp/PharoLiveCoding


© Domenico Cipriani, 2023

MUSIC with PHARO

Performance

performer: aPerformer

freq: aFloat 

transportStep: anInteger

activeProcess: aProcess
play 

stop

mute: aKeyOrAnArrayOfKeys

Dictionary

uniqueInstance

solo: aKey

at: aKey put: aSequencer Performer
play

solo: aKey

PerformerLocal
play

PerformerMIDI
play

PerformerKyma
play

PerformerSuperDirt
play

• The Performance class is a Singleton.


• Performance is a subclass of Dictionary.


• A Performer must be assigned to the Performance; the Performer selects the audio backend.


• The play method starts the Performance, and increments the transportStep every freq seconds 

(0.125 s at 120 bpm).



© Domenico Cipriani, 2023

MUSIC with PHARO

Sequencer

notes: anArray

durations: anArray

dirtMessage: aDictionary

noteIndex: anInteger

gates: aRhythmOrAnArray

midiChannel: anInteger

Sequencer

SequencerMono SequencerPoly

Object

• A SequencerMono sends out a note at once every time there is a gate.

• A SequencerPoly sends out chords

• The contents of a Sequencer can have different size, i.e. lengths, for example:
Sequencer new gates: 16 semiquavers; notes: #(32 48 51); duration: #(0.2 0.3 0.5 1 0.4 0.6).

aSequencer to: #aKey = Performance uniqueInstance at: #aKey put: aSequencer



© Domenico Cipriani, 2023

MUSIC with PHARO

P
E
R
F
O
R
M
A
N
C
E

SEQUENCER

SEQUENCER

SEQUENCER

SEQUENCER

SEQUENCER

transportStep increments of 1 every Performance uniqueInstance freq (seconds)

SEQUENCER
gates
notes

durations

dirtMessage



© Domenico Cipriani, 2023

MUSIC with PHARO
Performance, Sequencers, how does them work?

• Sequencers are inspired by traditional hardware sequencers, where triggers (~noteOn) events are notated in Time Unit 
Box System (TUBS).


p := Performance uniqueInstance.  
p performer: PerformerLocal new.
p freq: 136 bpm. "change the performances speed"
#( 1 0 0 0 1 1 0 0 1 0)  asSeq notes: #(32 37 38) to: #bass. “create a Sequencer and assign it to the performance " 
p play. "start the performance".
p stop. "stop the performance"

Performance >>> play
 self performer play

• Performance can be thought as a multitrack player for Sequencers.

• Sequencer are filled with parameters.

• A Performer must be assigned to the Performance.

#( 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 ) asSeq 

TUBS Traditional LiveCoding Dialect



© Domenico Cipriani, 2023

MUSIC with PHARO
Quick MIDI connections

PortMidi traceAllDevices.
mout := MIDISender new.
mout openWithDevice: 5.

•Get a list of all the available devices, create a new instance of MIDISender, open the MIDISender 
on the selected device

16 downbeats midiCh: 9 to: #kick.
16 upbeats midiCh: 12 to: #hat.
16 rumba, 16 banda midiCh:  3 to: #tom.
16 semiquavers notes: #(36 48 56 51 62 74 32) midiCh: 1 to: #bass.

•To play a MIDI performance, a MIDI channel must be specified for each sequencer sending the 
message midiCh: 

mout allNotesOff
• If MIDI notes got stuck / keep playing!



© Domenico Cipriani, 2023

MUSIC with PHARO
How to create a Sequencer with the LiveCoding Dialect 

• By sending messages (named as a rhythm) to integers, you create a Sequencer with the size of the integer, for example:

• By sending the hexBeat message to a string containing natural numbers and characters $A - $F, you create a Sequencer with the 
corresponding hexBeat (https://kunstmusik.github.io/learn-hex-beats/), for example:

• 16 downbeats
• 32 rumba
• 4 breves
• 8 semiquavers

• '8888' hexBeat
• '9090' hexBeat
• '80802ACDE9347B' hexBeat

• By sending the euclidean message to an array containing the onsets/triggers and the number of step,s you create a Sequencer with the 
corresponding euclidean rhythm (http://cgm.cs.mcgill.ca/~godfried/publications/banff.pdf), for example:

• #(3 8) euclidean
• #(5 16) euclidean
• #(7 12) euclidean

https://kunstmusik.github.io/learn-hex-beats/
https://kunstmusik.github.io/learn-hex-beats/


© Domenico Cipriani, 2023

MUSIC with PHARO

• Iconicity

• Economy

• Polysemy

Written code should resemble what we hear

Type less!

Principles

Many ways to do the same thing

16 upbeats

#(60 63 67) + 16

8 downbeats
#(1 0 0 0 1 0 0 0) asSeq
'88' hexBeat

• “The only primary principle of every human action, including verbal communication, 
is the expenditure of the least amount of effort to accomplish a task”.  (George Zipf)

“Iconicity is the relation of similarity between two aspects of a sign: its form and its 
meaning. An iconic sign is a sign that in some way resembles its meaning”.(Meir)



© Domenico Cipriani, 2023

MUSIC with PHARO
Chord/Scale/Arpeggios

• 4 breves chords: 'c-minor d-minor e-minor13 e#-sus4'; to: #superpiano.
• 16 semiquavers arpeggiate: 'f-minor7 d-minor13 g-sus2'; to: #superchip.

• 18 Scales from all around the world, sending the name of a scale to the Scale class returns an 
array with the intervals of the scale

• 47 types of chords, can be parsed into arrays of intervals sending the message chordsToArrays 
to a string containing the chords separated by a space in the form: 

root[+ # for sharp]-typeofchord

• Scale sakura.
• Scale flamenco



© Domenico Cipriani, 2023

MUSIC with PHARO
Stochastic methods of the LiveCoding Dialect

•Random trigs
• 64 randomTrigs.
• 128 randomTrigsWithProbability: 75

•  64 randomSamplesFromFolder: ’cpu’.
•Random trigs and random samples from a folder

• 64 randomNotesFrom: Scale gypsy octaves:2

• 128 quavers sound: 'superchip' 

•Random note from a scale spread over 2 octaves

•Random samples from a SuperDirt sample folder



© Domenico Cipriani, 2023

MUSIC with PHARO
Transformative methods of the LiveCoding Dialect

• Join sequencers (with comma): 
16 downbeats , '000F' hexBeat, 16 randomTrigs.

•Reverse sequencers
 '000F' hexBeat reverse.

• Flip gates/rests

#(5 12) euclidean flip.

•Offset sequencer (shift left with negative value, shift to right with positive value)

16 upbeats offset: 1.

•Repeats elements
4 copiesOfEach: #(-12 -10 -9 -8).

• “Transpose” elements
 #(-12 -10 -9 -8) + 2.

^ #(-12 -12 -12 -12 -10 -10 -10 -10 -9 -9 -9 -9 -8 -8 -8 -8)

^ #(-10 -8 -7  -6  )



MUSIC with PHARO
New!

Performance uniqueInstance performer: PerformerSuperDirt new

Now it is possible to use Pharo as a sequencer for the SuperDirt audio engine for SuperCollider

• From Pharo we send OSCBundles with timestamps(NTP timestamps), and the SuperCollider audio server takes care of  the 
scheduling of the messages.


• OSCBundles are sent with a latency of 50 milliseconds (a little latency is require by the sc server for proper scheduling).

• The Sequencers instance variable called dirtMessage is a Dictionary that contains associations keys->values that are send to 

SuperCollider into an OSC Bundle; a quick reference to the keys and values can be found here:

https://tidalcycles.org/docs/reference/synthesizers https://tidalcycles.org/docs/reference/audio_effects 

Pharo to SuperDirt

• SuperCollider is an audio server, programming language, and IDE for sound synthesis and algorithmic 
composition. Originally released by James McCartney for real-time audio synthesis and logarithmic 
composition. 


• The language combines the object-oriented structure of Smalltalk and features from functional 
programming language with a C-like syntax.


• SuperDirt is the SuperCollider implementation of the Dirt sampler, originally designed for the 
TidalCycles environment. It is a framework for  playing samples and synths, controllable over the 
Open Sound Control protocol, and locally from the SC language. SuperDirt is also used by Sardine, a 
live coding environment for Python 3.10+ created by Raphaël Forment.

https://tidalcycles.org/docs/reference/synthesizers
https://tidalcycles.org/docs/reference/audio_effects
https://github.com/tidalcycles/tidal
https://sardine.raphaelforment.fr/


© Domenico Cipriani, 2023

MUSIC with PHARO
New!

• 'cp ~ sd ht lt ~ ~ mt' forDirt to: #groove.

•  16 downbeats sound: 'bd:3' ; to: #kick.

•  #(5 12) euclidean flip to: #sd.

•  16 bomba sound: 'mt';  dirtNotes:  #(3 2 9 8); to: #toms; add: 'squiz'->#(2 3 7).

•  64 randomSamplesFromFolder: ’cpu’.

• #(5 12) euclidean randomSamplesFromFolder: ‘mt’.

• 4 breves sound: 'supersaw' dirtNotes: #(0 1 2 3); gain: 0.7; to: #piano .

• ‘hoover' once.

• ‘hoover' onceAtSpeed: 2.

Syntax for SuperDirt



© Domenico Cipriani, 2023

MUSIC with PHARO
New! The dirtMessage

• The instanceVariable of the Sequencers called dirtMessage contains an infrastructure for the messages 
sent  in the OSCBundle to the SuperDirt audio engine, for example:

's'->#('clap') 'n'->#(0 3 2 1 5) 'squiz'->#(2 1 0.9)

16 tresillo sound: 'clap'; dirtNotes: #(0 3 2 1 5); squiz:#(2 1 0.9)

Sequencer >>> playFullDirtEventAt: anIndex

    "sends a mesaage to SuperDirt with all the desired OSC arguments and values"
| message dur stepDuration|
stepDuration := Performance uniqueInstance freq.
message := OrderedCollection new.
message add: '/dirt/play'.
dur := self durations asDirtArray  wrap: anIndex .
message add: 'delta'; add: stepDuration * dur. 
dirtMessage keysAndValuesDo:  [ :key :value | message add: key; add: (value asDirtArray  wrap: anIndex ) ].
(OSCBundle for: {  OSCMessage for: message  }  )  sendToAddressString: '127.0.0.1' port: 57120.

Array >> wrap: anInteger [
“inspired by Cmajor language wrap<int> always wrap the 
index of the array to the array size"

    | result |
    result := self at: anInteger - 1 % self size + 1.
    ^ result

OSCMessage address



© Domenico Cipriani, 2023

MUSIC with PHARO

•More and more test!


•Better and exhaustive documentation and tutorials!


•A custom Playground.


•More GUI elements!


•Cyclical patterns as in Tidal Cycles ( https://tidalcycles.org) + a parser for Tidal Cycles’ mini 

notation.


• In the web browser with PharoJS?


•Generate sound and create instruments and effects inside Pharo embedding the FAUST compiler 

(https://faustcloud.grame.fr)

AND WHAT ABOUT

THE FUTURE?

https://tidalcycles.org
https://faustcloud.grame.fr


© Domenico Cipriani, 2023

mercí


