
Sequence: Pipeline modelling in Pharo

IWST 2023: International Workshop on Smalltalk Technologies,

August 29-31, 2023, Lyon, France

Dmitry Matveev

Intel Corporation

August 31, 2023

Outline

Introduction

Sequence overview

Implementation

Future

The background

What we did

▶ We developed platforms: SoC for IoT.

▶ Platforms bring various capabilities, e.g:
▶ Camera (MIPI), Media (codec), AI, DSP, etc.

▶ Capabilities are utilized by workloads.

▶ Workloads enable use-cases and their KPIs:
▶ "Handle N streams at K FPS while doing X".

The environemnt

How we did it
▶ Every component had its own team:

▶ Development, testing, benchmarking done individually;

▶ The integration team pulled all components together to make
a BKC:
▶ "Best-Known Con�guration".

Pre-production hardware is fun

▶ A very limited number of units.

▶ May be not very stable in the beginning.

The problem

How to evaluate the system performance without having the
complete system ready?

▶ Simulate it!

Why it matters?

▶ Understand how every individual component contributes to the
overall performance:
▶ What (where) to optimize next?

▶ Understand the application �ow:
▶ Are there execution gaps or stalls?
▶ How to reorganize the application �ow to meet the criteria?

Seeking for a solution

Simulator expectations

▶ Allow to describe system resources;

▶ Allow to de�ne building blocks using that resources;

▶ Allow to build scenarios atop of these blocks;

▶ Collect information of interest;

▶ Present the interactive system trace for inspection;

▶ Provide rapid feedback for "what-if?" and "trial-and-error"

analysis.

Crafting the solution

Why Smalltalk

▶ There was no good out-of-the box solution;

▶ Pharo itself was closest to become a solution:
▶ Smalltalk is a nice language to describe things;
▶ Pharo Playground (Ctrl+G) is all we need for rapid feedback;
▶ Roassal is a nice visualization framework.

▶ Only a simulator engine itself was missing.

Sequence: A minimum example

| a b |

a := 'A' asSeqBlock latency: 20 ms.

b := 'B' asSeqBlock latency: 20 fps.

a >> b.

(Sequence startingWith: a)

runFor: 500 m

Sequence: Data stream example

| s w g |

s := 'S' asSeqBlock latency: [:f | (f data * 10) ms].

w := 'W' asSeqBlock latency: 25 ms.

s >> w.

g := PMPoissonGenerator new lambda: 5.

(Sequence startingWith: s)

runFor: 800 ms

on: [g next]

Sequence: Resource sharing example

| a b t |

t := SeqTarget new lanes: 2.

a := 'A' asSeqBlock latency: 25 ms; target: t; lanes: 2.

b := 'B' asSeqBlock latency: 30 ms; target: t; lanes: 1.

SeqNaiveMultiExecutor new

add: (Sequence startingWith: a);

add: (Sequence startingWith: b);

scheduler: SeqRoundRobinScheduler new;

runFor: 500 ms;

trace.

Sequence: Real-time processing example

| s1 a s2 b |

s1 := 'Src1' asSeqBlock latency: 30 fps; live.

a := 'A' asSeqBlock latency: 22 fps.

s2 := 'Src2' asSeqBlock latency: 30 fps; live.

b := 'B' asSeqBlock latency: 30 fps.

s1 >> a.

s2 >> b.

SeqNaiveMultiExecutor new

add: (Sequence startingWith: s1);

add: (Sequence startingWith: s2);

runFor: 500 ms;

trace.

Sequence: Advanced examples
Pipelining

| src a b c seq opts |

src := 'Src' asSeqBlock

latency: 30 fps;

live.

a := 'A' asSeqBlock latency: 33 ms.

b := 'B' asSeqBlock latency: 33 ms.

c := 'C' asSeqBlock latency: 33 ms.

src >> a >> b >> c.

seq := Sequence startingWith: src.

opts := SeqExecOptions new

usePipelining;

dropFrames.

(SeqNaiveMultiExecutor new

scheduler: SeqRoundRobinScheduler new;

add: seq options: opts;

runFor: 500 ms;

trace) showFrameDrops; colorByFrames

Streams

| src a b c xpu seq opts |

src := 'Src' asSeqBlock

latency: 33 ms;

live.

a := 'A' asSeqBlock latency: 10 ms.

b := 'B' asSeqBlock latency: 45 ms.

c := 'C' asSeqBlock latency: 10 ms.

src >> a >> b >> c.

xpu := SeqTarget new lanes: 2.

b target: xpu; streams: 2.

seq := Sequence startingWith: src.

opts := SeqExecOptions new

usePipelining;

dropFrames.

(SeqNaiveMultiExecutor new

scheduler: SeqRoundRobinScheduler new;

add: seq options: opts;

runFor: 500 ms;

trace) showFrameDrops; colorByFrames.

Sequence: Advanced examples

Pipelining example

Streams example

Sequence: Characteristics of a DES

Sequence is as Discrete Event Simulation (DES) system

▶ It registers Events that happen during the simulation;
▶ Events are essentially facts that particular blocks could execute;

▶ System state is de�ned by Targets which are free or locked at

the given time point;

▶ Targets are essentially the Resources;

▶ Simulation time is discrete, the current time pointer is

advanced by the coming events.

More on DES

▶ J. Banks, Introduction to Simulation (1999)

Sequence inside

▶ The core of Sequence is a simulation executor.
▶ There may be multiple but SeqNaiveMultiExecutor is the

most advanced at the time.

▶ Simulation executor represents sequences as running processes.

▶ Processes are running periodically with no termination criteria.
▶ The system-level termination criteria is simulation time

(#runFor:).

▶ Normally, a sequence object maps to a single execution
process, but there are exceptions:
▶ Sequences with live sources map to two processes, one for a

source block and one for the sequence;
▶ Pipelined sequences map to N interconnected processes: every

block gets its own process (or K processes if streams: k

property is assigned).

Sequence inside: Event streams

SeqEventStream: the heart of the simulation system

▶ Represents a running periodic process.

▶ FSM inside, handles one block (one target) at time.

▶ Provides compact API for the executor to manage:
▶ #canWork: answer executor if this particular stream can do the

work, depending on its state.
▶ #updateFrame:: sent implicitly within executor when stream's

input data is available (a new input frame is generated).
Stream updates its internal block stream based on this data.

▶ #advance: make next step (progress) in the process.
Internally, either lock or release the current resource for the
current block.

▶ #nextTick: answer the time of the next event in this stream.
▶ #updateTimePoint:: let the event stream know what is the

simulation time right now.

Sequence inside: Event stream state machine

#idle #ready #exec

Meaning No data available Data is available Data is available
Not entered execution yet Executing (may be blocked

waiting for a resource)

#canWork Asks canStartBlock This/next block can lock Lock acquired: true

its target No lock:
- See #canWork @ #ready

#advance Call startBlock Call startBlock if not yet Lock acquired: leave block
Move to #ready Enter a new block: - Release resource

- See #advance @ #exec - Record event
. . . If at the last block:
- Record completion
- Move to #idle

No lock:
- Peek next block
- Acquire a new lock

i d l e

r e a d y
c a n S t a r t ?

u p d a t e F r a m e :

e x e c

a d v a n c e

a d v a n c e
(EOS)

a d v a n c e

Sequence inside: Simulation executor loop

Simulation executor loop becomes straightforward with the

SeqEventStream abstraction de�ned above:

▶ Update time point for all streams;

▶ Ask which streams can work;
▶ Filter out streams which can work right now (time point is not

in the future);
▶ Let Scheduler decide which stream will be advanced;
▶ Advance the selected stream (#advance:) and update the

time point (sometimes with 0 increment).

▶ Repeat.

Note: advancing one stream invalidates invariants so some streams

which could work now may not work anymore in the next iteration.

Sequence inside: Scheduler

▶ User-con�gurable object (can implement your own);

▶ Integrated into:
▶ Executor loop: asked which stream to prefer if there're

multiple candidates to run right now.
▶ #decide: aCollectionOfStreams.

▶ Target (resource) locking: asked if a stream can lock this
resource.

▶ #askLockOn: aTarget for: aStream at: aSeqBlock:

targets consult with scheduler if an available resource can be

given on request;
▶ #waitlist: aStream to: aTarget: sent by a Stream to

inform it is interested in locking the target, if resource lock

request has been rejected.

▶ Available: SeqDumbScheduler, SeqRoundRobinScheduler,

SeqPriorityRRScheduler.

Next steps on Sequence

Short-term plan

▶ Extend test coverage, close the functionality gaps.

▶ Interoperability: export to Perfetto format.

▶ Prepare a formal release.

Mid-term plan

▶ Interoperability: import from Perfetto format.

▶ Introduce annotations: some way to mark parts of the

sequence we're especially interested in, to see it in the trace.

▶ Introduce monitors: custom hooks to probe and collect

simulation run-time information about the running processes

and resource state.

Sequence: Vision

Long-term vision

▶ Extend the time domain from milliseconds to arbitrary.

▶ Extend to model non-periodic processes.

▶ Consider Queues as the right abstraction to access targets?

▶ Composable simulations:
▶ What if a Sequence block is also simulation inside?

Thanks!

Sequence is already Open Source:

▶ Currently hosted at Github:

https://github.com/dmatveev/sequence.

▶ ~2.5KLOC of code, ~1.5KLOC of tests.

▶ MIT License.

Try it today!

Metacello new

baseline: 'Sequence';

repository: 'github://dmatveev/sequence';

load.

https://github.com/dmatveev/sequence

	Introduction
	Sequence overview
	Implementation
	Future

