
111

Analyzing Dart
Language with Pharo:
Report and early results

Nicolas Hlad, Benoit Verhaeghe, Mustapha
Derras

222

1. Industrial and Academic contexts

2. What is Dart ?

3. What is our analysis process of Dart ?

4. Conclusion

Presentation Plan

333

Berger-Levrault

• created 1463 as a printing company
• now an international software editor

• Develop administrative software for cities
administrations, industries, hospitals, etc.

• Since 2022, in collaboration with Evref

• Compagnies with divers technologies :

555

Flutter and its programming language Dart

since 2014

iOS & Android Web*

since 2011

* On web, the Dart code is compiled to JS Compiler or WebAssembly

Dart code code specific

Virtual Machine

Code specific to the platform : Java, Swift, C#, JS, etc.

PC, MacOS, Linux

888

Dart Grammar (quick overview)
Parsing Dart

i) Object oriented and function Programming

iii) A “loosely” Typed language

ii) Language features and syntax sugar

999

Why do we need to analyze Dart ?

With the deprecation of Xamarin, Flutter has
become the main SDK for native multiplatform
development on mobile (and more)

Main language for Flutter
According to spectrum.ieee.org, Dart is the
15th trending language in 2022

Growing popularity

Outside Dart toolkit, we note an absence of
academic or industrial tools to analyze Dart
code. With Platforms like EMF/ECORE focusing on
older language (e.g., Java, C/C++, C#, etc.)

no Software Engineering tool yet

111111

Overview of our analysis of Dart

Figure – Analysis process set up for Dart in Pharo

To exploit and reuse the tools’ suit of Pharo, which has shown to be a reliable static analyzer of
legacy languages like Java, Delphi, and C and which have maturity over industrial use case

Goal

121212

Overview of our analysis of Dart

Parsing Dart

Figure – Analysis process set up for Dart in Pharo

To exploit and reuse the tools’ suit of Pharo, which has shown to be a reliable static analyzer of
legacy languages like Java, Delphi, and C and which have maturity over industrial use case

Goal

131313

Generating a parser with SmaCC
Parsing Dart

EBNF of Dart
for ANTLR

ANTLR

141414

Generating a parser with SmaCC
Parsing Dart

EBNF of Dart
for SmaCC

EBNF of Dart
for ANTLR

'Attribut_of_the_node' {{declared_SmaCC_Node}}

ANTLR

SmaCC

151515

Generating a parser with SmaCC
Parsing Dart

EBNF of Dart
for SmaCC

EBNF of Dart
for ANTLR

SmaCC

161616

Generating a parser with SmaCC
Parsing Dart

EBNF of Dart
for SmaCC

EBNF of Dart
for ANTLR

SmaCC Package Pharo
SmaccDart Parser

AST of Dart
(for a given code)

https://github.com/Evref-BL/SmaccDart
parser + AST visualisation & more…

https://github.com/Evref-BL/SmaccDart

181818

limitations of SmaCCDart
Parsing Dart

1. Limited to the Dart2 grammar (by ANTLR)
2. No official EBNF grammar by Google a its specification (with ambiguities reported)
3. We use code-refactoring to handle multiline string interpolations and performance issues

191919

limitations of SmaCCDart
Parsing Dart

1. Limited to the Dart2 grammar (by ANTLR)
2. No official EBNF grammar by Google a its specification (with ambiguities reported)
3. We use code-refactoring to handle multiline string interpolations and performance issues

@override
Widget build(BuildContext context) {
return Scaffold(
appBar: AppBar(
title: Text('Addition App’),
),
body: Center(
child:
TextField(labelText: 'Number 1'),
TextField(labelText: 'Number 2’),

),
ElevatedButton(
onPressed: performAddition,
child: Text('Add’),
)
);
}

@override
Widget build(BuildContext context) {
return new Scaffold(
appBar: new AppBar(
title: new Text('Addition App’),
),
body: new Center(
child:
new TextField(labelText: 'Number 1'),
new TextField(labelText: 'Number 2’),
),
new ElevatedButton(
onPressed: performAddition,
child: new Text('Add’),
)
);
}

~5 times faster on a class 50 lines

202020

Plan
Visualization tools

212121Figure – AST visualization made with Roassal3

222222

AnimSearch:

Testing SmaCCDart on a Flutter App
Experimenting visualisations

14 dart files & 2178 LoC

for each file

Extract its corresponding an AST

Using the parser to extract the file dependencies of an opensource flutter app

Use case

232323Figure – a mermaid visualization of the file dependencies of AnimSearch

242424Figure – a mermaid visualization of the file dependencies of AnimSearch

With an increasing number of entities to display, visualization becomes hard to understand.
Thus, we rely on model driven engineering to continue the analysis.

limitations

252525

Plan

Model analysis

262626

Defining a Famix Meta Model for Dart
Model Driven Engineering

Package Pharo
SmaccDart Parser

134 SmaCCDart nodes

272727

Defining a Famix Meta Model for Dart
Model Driven Engineering

Package Pharo
SmaccDart Parser Famix Traits

282828

Defining a Famix Meta Model for Dart
Model Driven Engineering

Package Pharo
SmaccDart Parser

Meta-model GeneratorFamix Traits

292929

Defining a Famix Meta Model for Dart
Model Driven Engineering

Package Pharo
SmaccDart Parser

Meta-model Generator FamixDart meta-model
Chartreuse-DFamix Traits

https://github.com/Evref-BL/Chartreuse-D
Meta-model Generator + model importer

https://github.com/Evref-BL/Chartreuse-D

313131

FamixDart Importer in an example
Model Driven Engineering

class
A

class
B

method
mA

method
mB

var
b

class
A

class
B

method
mA

method
mB

var
b

methods ▼

methods ▶

References ▶

Variables ▶

Type ▼

1. Create instances
 (from its AST)

2. Symbolic
Resolver from

 the AST

FamixDart model’s entities

Entities with associations

323232

Challenge to import FamixDart model
Model Driven Engineering

§ dynamic introduces ambiguity
for symbolic resolution.

§ For A,B two classes, with each a method m()

§ In A, m() as two optional parameters (a,b)

§ In B, m() as one option parameter (a)

At line 17,
how to resolve which method is called between
A::m() and B::m() ?

333333

Conclusion

353535

Take away points
Conclusion

§ We explore how a new language like Dart can be analyzed by existing tools in
Pharo, such as:
1. SmaCC for parser
2. Roassal3 for visualizations
3. And Famix for model driven engineering.

§ We extend those tools to develop :
1. A parser, SmaCCDart
2. And a Famix Meta-model for Dart, FamixDart
3. An famixDart import, Chartreuse-D

§ Our tools are open sources with repository already available.

363636

Future works (late 2023)
Conclusion

§ On SmaCCDart
§ adding no regression tests
§ removing the source code refactoring 🤕

§ On FamixDart
§ continuing the metamodel
§ handling dynamic types when importing associations

§ … and in some years
§ having a Flutter app metamodel (i.e. handling platform specific code in Flutter)

383838

§ Example of AnimeDetailsGenres widget

§ Here we need to capture that :
§ A Container has a Decoration and a child
§ This child is Center widget
§ Center has a Text as child
§ Etc…

§ None of these widgets are attributes of the class

§ Yet, they define how AnimeDetailsGenres is
composed.

§ How to capture this information is our model ?

From dart modeling to Flutter modeling

