
Transpiling Pharo Classes to JS
ECMAScript 5 versus ECMAScript 6

Noury Bouraqadi & Dave Mason

International Workshop on Smalltalk Technologies Lyon, France; August 29th-31st, 2023

100%
Pharo

Javascript
100%

Development Production
Development Production

2

100%
Pharo

Javascript
100%

Development Production
Development Production

3

ECMAScript
5

100%
Pharo

Javascript
100%

Development Production
Development Production

4

ECMAScript
5

ECMAScript
6?

vs 5EcmaScript 5

● Prototypes Only
● Dynamic Object Structure
● Whitebox Objects
● Reified Functions
● this Pseudo-variable
● Constructor Functions
● new Operator

ES5

+

Class Related Constructs

● Classes Definition
● Class Inheritance
● Instance Methods
● Class Methods (static)
● super Pseudo-variable

EcmaScript 6

Class Transpilation by Example 6

ES6: Class Definition + Instance Methods 7

ES6: Class Methods 8

JS “Instance Side” Object Graph 9

JS “Instance Side” Object Graph 10

new Counter()

JS “Class Side” Object Graph 11

ES5: Class Definition + Instance Methods 12

ES5: Class Methods 13

Subclass Transpilation by Example 14

15ES6: Subclass Definition

16ES6: Subclass Overriding Instance Methods

17ES6: Subclass Methods

18JS Subclass “Instance Side” Object Graph

19JS Subclass “Class Side” Object Graph

20ES5: Subclass Definition

21ES5: Subclass Instance Methods

22ES5: Subclass Methods

23JS Subclass Access Superclass IV

let c1 = Counter.getDefaultInstance();
let c2 = CircularCounter.getDefaultInstance();
c1 === c2; // true!

24Property Sharing Fix

Same solution for
both ES5 and ES6

25JS Subclass Access Superclass IV

let c1 = Counter.getDefaultInstance();
let c2 = CircularCounter.getDefaultInstance();
c1 === c2; // false!

● Mac Book Pro
○ CPU 8 Intel Core i9, 2.3 GHz,
○ RAM 32 GB, 2667 MHz DDR4
○ Hard drive 1 TB SSD, PCI-Express with APFS File System
○ Mac OS X Ventura 13.2.1

● Pharo 10
● Pharo VM 100 Darwin x86 64-bit

● JS Targets
○ Node
○ Web Browser

26Benchmark Procedure

27Improved Transpilation Time + File Size

Improvement
~8%

Improvement
1% - 5%

28Significantly Faster Load Time

Improvement
25% - 33%

● 5 warm up runs

● 10 runs

● Richards: 50 iterations / run

● Delta Blue: 300 iterations / run

29Run-time Benchmark Procedure

30Improved Runtime Performance

Improvement
3% - 10%

31Improved Runtime Performance vs Pharo 10

ES6 vs Pharo10
Improvement

16% - 24%

32Improved Runtime Performance vs Pharo 10

ES6 vs Pharo10
Improvement

35% - 43%

33Summary

● PharoJS is a viable solution to reuse JS Ecosystem

● Transition from ES5 to ES6 is Beneficial

○ Significantly faster Load time

○ Improved other benchmarks

○ More idiomatic code with ES6

● JS white box model = no encapsulation
○ Generate accessors on the fly for third party classes

● Inherited Instance Variables e.g CircularCounter example
○ Force IV Creation

● Metaclass inheritance for third party classes
○ class X {...} vs class X extends Object {...}

● Support full Pharo is still a Challenge
○ DoesNotUnderstand
○ superclass - subclasses relationship
○ thisContext, become:, …

34Getting exact Smalltalk Semantics is Still tricky

Develop in Pharo, Run on JavaScript
PharoJS.org

Kindly Supported by

Thanks to all the contributors!

MIT License

