
Garbage Collector Tuning
in Pathological Allocation Pattern Applications

nahuel.palumbo@inria.fr

Nahuel Palumbo - Sebastian Jordan Montaño - Guillermo Polito - Pablo Tesone - Stéphane Ducasse

1

IWST ’23

mailto:nahuel.palumbo@inria.fr

Motivation
“Pharo is slow”

VM Developers
Pharo-AI Developers

My application takes >1h30m

What are you
doing?

Loading a 3GB
dataset

Ok, let’s see the
memory management

2

Motivation
“Pharo The GC is slow”

DataFrame
3

Motivation
“Pharo The GC is slow”

~1min

=2.5min

>1h30m

DataFrame
4

Motivation
“Pharo The GC is slow”

3x

2x

1.5x

3.6x

DataFrame
5

Motivation
“Pharo The GC is slow”

>1h30m !!!!

DataFrame

~1h25m

6

Memory Management
Garbage Collection

7

Manually Memory Management
A work for devs?

data	=	malloc(size)	

...	

...	use	data	...	

...	

free(data)
Manually

Memory Management

8

Automatic Memory Management
Garbage Collectors

data	=	malloc(size)	

...	

...	use	data	...	

...	

free(data)
Manually

Memory Management

data	=	Data	new	

...	

...	use	data	...	

...	

??????????

Compute the size
Allocate in the memory

Maybe move the data for
better use of the memory

Free the space when data
is not used anymore

9

Automatic Memory Management
Garbage Collectors

data	=	malloc(size)	

...	

...	use	data	...	

...	

free(data)
Manually

Memory Management

data	=	Data	new	

...	

...	use	data	...	

...	

??????????

Compute the size
Allocate in the memory

Maybe move the data for
better use of the memory

Free the space when data
is not used anymore

Developer 10

Automatic Memory Management
Garbage Collectors

data	=	malloc(size)	

...	

...	use	data	...	

...	

free(data)
Manually

Memory Management

data	=	Data	new	

...	

...	use	data	...	

...	

??????????

Compute the size
Allocate in the memory

Maybe move the data for
better use of the memory

Free the space when data
is not used anymore

Developer 11

Application’s Allocation Patterns
How do the applications use the memory?

MemoryAllocations are particular for each application

Hard to predict

There are some general heuristics

Easy to predict

12

Application’s Allocation Patterns
Weak generational hypothesis

data	=	Data	new	

...	first	use	of	data	...	

??????????

Will you use it again?

No, you can free
the memory

Yes, keep it!

>90%

<10%

“Most of the objects die young”
13

Application’s Allocation Patterns
When an object dies?

“Must be accessible from the roots”

ROOT

14

Application’s Allocation Patterns
When an object dies?

“Must be accessible from the roots”

ROOT

15

Application’s Allocation Patterns
When an object dies?

“Must be accessible from the roots”

ROOT

16

Application’s Allocation Patterns
When an object dies?

“Must be accessible from the roots”

ROOT

17

Application’s Allocation Patterns
When an object dies?

“Must be accessible from the roots”

ROOT

18

Application’s Allocation Patterns
When an object dies?

“Must be accessible from the roots”

ROOT

19

Application’s Allocation Patterns
When an object dies?

“Must be accessible from the roots”

ROOT

20

Application’s Allocation Patterns
When an object dies?

“Must be accessible from the roots”

ROOT

21

Generational Garbage Collector
High-Performance Automatic Memory Management for OOP

D. Ungar, Generation scavenging: A non-disruptive high performance storage reclamation algorithm

New Space Old Space

HEAP
ROOT

Remembered
Set Roots of the New Space (write barrier)

22

Generational Garbage Collector
High-Performance Automatic Memory Management for OOP

D. Ungar, Generation scavenging: A non-disruptive high performance storage reclamation algorithm

New Space Old Space

HEAP
ROOT

Remembered
Set Roots of the New Space (write barrier)

Can grow!

23

Generational Garbage Collector
High-Performance Automatic Memory Management for OOP

D. Ungar, Generation scavenging: A non-disruptive high performance storage reclamation algorithm

New Space Old Space

HEAP
ROOT

Scavenge
Remembered

Set Roots of the New Space (write barrier)

Can grow!

FAST
(often)

24

Generational Garbage Collector
High-Performance Automatic Memory Management for OOP

D. Ungar, Generation scavenging: A non-disruptive high performance storage reclamation algorithm

New Space Old Space

HEAP
ROOT

FULL GC

Scavenge
Remembered

Set Roots of the New Space (write barrier)

Can grow!

FAST
(often)

SLOW
(occasionally)

25

Long lifetimes

Memory-starved

Pathological Allocation Pattern
Garbage Collectors’ problem

Weak generational

Stable memory use

Few Full GCs

Fast Scavengers

Many Full GCs

Scavenger overhead

26

Long lifetimes

Memory-starved

Pathological Allocation Pattern
Garbage Collectors’ problem

Weak generational

Stable memory use

Few Full GCs

Fast Scavengers

Many Full GCs

Scavenger overhead

27

Pathological Allocation Pattern
Tuning the Garbage Collector

New Space Old Space

HEAP
ROOT

FULL GC

Scavenge
Remembered

Set

28

Pathological Allocation Pattern
Tuning the Garbage Collector

New Space Old Space

HEAP
ROOT

FULL GC

Scavenge
Remembered

Set

29

Pathological Allocation Pattern
Tuning the Garbage Collector

New Space Old Space

HEAP
ROOT

FULL GC

Scavenge
Remembered

Set

30

Pathological Allocation Pattern
Tuning the Garbage Collector

New Space Old Space

HEAP
ROOT

FULL GC

Scavenge
Remembered

Set

31

Pathological Allocation Pattern
Tuning the Garbage Collector

New Space Old Space

HEAP
ROOT

FULL GC

Scavenge
Remembered

Set

Developer 32

How should I tune the GC
parameters for my application?

33

Our methodology for GC tuning
Profile GC events

From Scavenges:
• Amount of memory used (before and after).
• Size of the Remembered Set (before and after).
• Tenuring info (amount of data - threshold).
• Executed time.

From FullGC:
• Time spent marking/sweeping/compacting.
• Executed time.

DataFrame

Logs

Plots

Tuning

Developer34

How Memory Grows
The overhead

Time
35

How Memory Grows
The overhead

Time

I run some FullGCs
when memory grows

so much Don’t do that

36

How Memory Grows
The tuning solution

FullGC Ratio - Threshold for triggering a FullGC
when the old space grows more than expected

Grow Headroom - Minimum amount of
memory that the GC will order from the OS

DataFrame

I will load 3GB
of data

37

How Memory Grows
The tuning solution

Time
38

How Memory Grows
The tuning solution

Time
Developer

1% - 5% faster!

Just that?

39

Deeper in the allocation pattern
Generational clash

40

Deeper in the allocation pattern
Generational clash

BIG

OVERHEAD

41

Deeper in the allocation pattern
Generational clash

New Space Old Space

HEAP

Scavenge
Remembered

Set Roots of the New Space

42

Deeper in the allocation pattern
Generational clash

New Space Old Space

HEAP

Scavenge
Remembered

Set Roots of the New Space

43

Deeper in the allocation pattern
Generational clash

New Space Old Space

HEAP

Scavenge
Remembered

Set Roots of the New Space

44

Deeper in the allocation pattern
Generational clash

New Space Old Space

HEAP

Scavenge
Remembered

Set Roots of the New Space

45

Deeper in the allocation pattern
Remembered Set overhead

The Remembered Set is large (lot of objects) *	No	chart	:(*

The objects in the Remembered Set are large
DataFrame

46

Deeper in the allocation pattern
THE DataFrame

DataFrame

In the New
Space

47

In the Old
Space

Long Scavenges
The tuning solution

How? I don’t have any
algorithm for that

We need to avoid having large
objects in the Remembered Set

Then, close the New Space

48

Long Scavenges
The tuning solution

Tenuring threshold - Desired number of objects
already in the New Space for tenuring to the Old Space

DataFrame
Close the

door

New
Space

49

Long Scavenges
The tuning solution

50

Long Scavenges
The tuning solution

12.5x faster!

Developer 51

Conclusions

52

Final result

>1h30m
~7mins

53

Conclusions

New Old Space

HEAP
ROOT

FULL GC

Scavenge
Remembered

Set

54

Conclusions

New Old Space

HEAP
ROOT

FULL GC

Scavenge
Remembered

Set

DataFrame

Tuning

Developer

55

Conclusions

New Old Space

HEAP
ROOT

FULL GC

Scavenge
Remembered

Set

DataFrame

Tuning

Developer

56

My questions

• How much should devs know about their applications?

• How much should devs know about Garbage Collection algorithms?

• How much should devs know about the running VM?

57

Conclusions

New Old Space

HEAP
ROOT

FULL GC

Scavenge
Remembered

Set

DataFrame

Tuning

Developer

58

Conclusions

New Old Space

HEAP
ROOT

FULL GC

Scavenge
Remembered

Set

DataFrame

Tuning

Developer

Questions?
59

