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Motivation
“Pharo is slow”

VM Developers
Pharo-AI Developers

My application takes >1h30m

What are you 
doing?

Loading a 3GB 
dataset

Ok, let’s see the 
memory management
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Motivation
“Pharo The GC is slow”

>1h30m !!!!

DataFrame

~1h25m
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Memory Management 
Garbage Collection
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Manually Memory Management
A work for devs?

data	=	malloc(size)	

...	

...	use	data	...	

...	

free(data)
Manually  

Memory Management
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Automatic Memory Management
Garbage Collectors

data	=	malloc(size)	

...	

...	use	data	...	

...	

free(data)
Manually  

Memory Management

data	=	Data	new	

...	

...	use	data	...	

...	

??????????

Compute the size  
Allocate in the memory

Maybe move the data for 
better use of the memory

Free the space when data 
is not used anymore
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Application’s Allocation Patterns
How do the applications use the memory?

MemoryAllocations are particular for each application

Hard to predict

There are some general heuristics

Easy to predict
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Application’s Allocation Patterns
Weak generational hypothesis

data	=	Data	new	

...	first	use	of	data	...	

??????????

Will you use it again?

No, you can free 
the memory

Yes, keep it!

>90%

<10%

“Most of the objects die young”
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Application’s Allocation Patterns
When an object dies?

“Must be accessible from the roots”

ROOT
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Generational Garbage Collector
High-Performance Automatic Memory Management for OOP

D. Ungar, Generation scavenging: A non-disruptive high performance storage reclamation algorithm

New Space Old Space

HEAP
ROOT

Remembered 
Set Roots of the New Space (write barrier)
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Generational Garbage Collector
High-Performance Automatic Memory Management for OOP

D. Ungar, Generation scavenging: A non-disruptive high performance storage reclamation algorithm

New Space Old Space

HEAP
ROOT

FULL GC

Scavenge
Remembered 

Set Roots of the New Space (write barrier)

Can grow!

FAST 
(often)

SLOW 
(occasionally)
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Long lifetimes


Memory-starved

Pathological Allocation Pattern
Garbage Collectors’ problem

Weak generational


Stable memory use

Few Full GCs


Fast Scavengers

Many Full GCs


Scavenger overhead
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Tuning the Garbage Collector
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How should I tune the GC 
parameters for my application?
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Our methodology for GC tuning
Profile GC events

From Scavenges: 
• Amount of memory used (before and after). 
• Size of the Remembered Set (before and after). 
• Tenuring info (amount of data - threshold). 
• Executed time. 

From FullGC: 
• Time spent marking/sweeping/compacting.  
• Executed time.

DataFrame

Logs

Plots

Tuning
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How Memory Grows
The overhead

Time
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How Memory Grows
The overhead

Time

I run some FullGCs 
when memory grows 

so much Don’t do that
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How Memory Grows
The tuning solution

FullGC Ratio - Threshold for triggering a FullGC 
when the old space grows more than expected

Grow Headroom - Minimum amount of 
memory that the GC will order from the OS

DataFrame

I will load 3GB 
of data
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How Memory Grows
The tuning solution

Time
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How Memory Grows
The tuning solution

Time
Developer

1% - 5% faster!

Just that?

39



Deeper in the allocation pattern
Generational clash
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Deeper in the allocation pattern
Generational clash

BIG

OVERHEAD
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Deeper in the allocation pattern
Remembered Set overhead

The Remembered Set is large (lot of objects) *	No	chart	:(	*

The objects in the Remembered Set are large
DataFrame
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Deeper in the allocation pattern
THE DataFrame

DataFrame

In the New 
Space
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In the Old 
Space



Long Scavenges
The tuning solution

How? I don’t have any 
algorithm for that

We need to avoid having large 
objects in the Remembered Set

Then, close the New Space
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Long Scavenges
The tuning solution

Tenuring threshold - Desired number of objects 
already in the New Space for tenuring to the Old Space

DataFrame
Close the 

door

New 
Space
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Long Scavenges
The tuning solution
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Long Scavenges
The tuning solution

12.5x faster!
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Conclusions
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Final result

>1h30m
~7mins
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My questions

• How much should devs know about their applications?


• How much should devs know about Garbage Collection algorithms?


• How much should devs know about the running VM?

57



Conclusions

New Old Space

HEAP
ROOT

FULL GC

Scavenge
Remembered 

Set

DataFrame

Tuning

Developer

58



Conclusions

New Old Space

HEAP
ROOT

FULL GC

Scavenge
Remembered 

Set

DataFrame

Tuning

Developer

Questions?
59


