
Design Principles for a High-Performance Smalltalk

Dave Mason
Toronto Metropolitan Universityi

©2022 Dave Mason

https://creativecommons.org/licenses/by-nc-sa/4.0/


Design Principles

Large memories
64-bit and IEEE-768
Multi-core and threading
Fast execution



Design Principles

Large memories
64-bit and IEEE-768
Multi-core and threading
Fast execution



Design Principles

Large memories
64-bit and IEEE-768
Multi-core and threading
Fast execution



Design Principles

Large memories
64-bit and IEEE-768
Multi-core and threading
Fast execution



Zag Smalltalk

from-scratch implementation
low-level is implemented in Zig
goal is to support existing OpenSmalltalk systems
don’t want to rewrite userland!



Zag Smalltalk

from-scratch implementation
low-level is implemented in Zig
goal is to support existing OpenSmalltalk systems
don’t want to rewrite userland!



Zag Smalltalk

from-scratch implementation
low-level is implemented in Zig
goal is to support existing OpenSmalltalk systems
don’t want to rewrite userland!



Zag Smalltalk

from-scratch implementation
low-level is implemented in Zig
goal is to support existing OpenSmalltalk systems
don’t want to rewrite userland!



Immediate Values

64 bit
NaN-boxing
double-floats, 51-bit SmallInteger, Booleans, nil, Unicode
characters, Symbols
room for instances of any type with single 32-bit value



Immediate Values

64 bit
NaN-boxing
double-floats, 51-bit SmallInteger, Booleans, nil, Unicode
characters, Symbols
room for instances of any type with single 32-bit value



Immediate Values

64 bit
NaN-boxing
double-floats, 51-bit SmallInteger, Booleans, nil, Unicode
characters, Symbols
room for instances of any type with single 32-bit value



Immediate Values

64 bit
NaN-boxing
double-floats, 51-bit SmallInteger, Booleans, nil, Unicode
characters, Symbols
room for instances of any type with single 32-bit value



S+E F F F Type
0000 0000 0000 0000 double +0
0000-7FEF xxxx xxxx xxxx double (positive)
7FF0 0000 0000 0000 +inf
7FF0-F xxxx xxxx xxxx NaN (unused)
8000 0000 0000 0000 double -0
8000-FFEF xxxx xxxx xxxx double (negative)
FFF0 0000 0000 0000 -inf
FFF0-5 xxxx xxxx xxxx NaN (currently unused)
FFF6 xxxx xxxx xxxx heap object
FFF7 0001 xxxx xxxx reserved (tag = Object)
FFF7 0002 xxxx xxxx reserved (tag = SmallInteger)
FFF7 0003 xxxx xxxx reserved (tag = Double)
FFF7 0004 0001 0000 False
FFF7 0005 0010 0001 True
FFF7 0006 0100 0002 UndefinedObject
FFF7 0007 aaxx xxxx Symbol
FFF7 0008 00xx xxxx Character
FFF8-F xxxx xxxx xxxx SmallInteger
FFF8 0000 0000 0000 SmallInteger minVal
FFFC 0000 0000 0000 SmallInteger 0
FFFF FFFF FFFF FFFF SmallInteger maxVal



nil, false, and true: sole representatives. could do any class with only a 32 bit payload



Symbols: low 24: symbol #; 8:arity; together are hash value



SmallInteger: 51-bit; comparison works naturally; adding/subtracting a normal integer works naturally; others in the paper



Multi-core support

only way to speed up applications
minimal blocking
computational/mutator threads - typically 1 per core
I/O threads - one per open “file”
global collector thread



potential blocking: memory contention, I/O



Multi-core support

only way to speed up applications
minimal blocking
computational/mutator threads - typically 1 per core
I/O threads - one per open “file”
global collector thread



potential blocking: memory contention, I/O



Multi-core support

only way to speed up applications
minimal blocking
computational/mutator threads - typically 1 per core
I/O threads - one per open “file”
global collector thread



potential blocking: memory contention, I/O



Multi-core support

only way to speed up applications
minimal blocking
computational/mutator threads - typically 1 per core
I/O threads - one per open “file”
global collector thread



potential blocking: memory contention, I/O



Multi-core support

only way to speed up applications
minimal blocking
computational/mutator threads - typically 1 per core
I/O threads - one per open “file”
global collector thread



potential blocking: memory contention, I/O



Memory management

mutator threads
copying collector
private nursery (includes stack)
2 teen arenas - n copies before promotion
when prompted, finds next 100 refs to global stack, then blocks,
repeat
then can proceed

I/O threads
maintains list of current shared buffers while I/O blocked

global collector thread
non-moving mark/sweep arena
periodically does mark
marks known shared structures (class table, symbol table, dispatch
tables)
asks mutators for global roots
processes them until all roots have been found
then can proceed to sweep

...



Memory management

mutator threads
copying collector
private nursery (includes stack)
2 teen arenas - n copies before promotion
when prompted, finds next 100 refs to global stack, then blocks,
repeat
then can proceed

I/O threads
maintains list of current shared buffers while I/O blocked

global collector thread
non-moving mark/sweep arena
periodically does mark
marks known shared structures (class table, symbol table, dispatch
tables)
asks mutators for global roots
processes them until all roots have been found
then can proceed to sweep

...



Memory management

mutator threads
copying collector
private nursery (includes stack)
2 teen arenas - n copies before promotion
when prompted, finds next 100 refs to global stack, then blocks,
repeat
then can proceed

I/O threads
maintains list of current shared buffers while I/O blocked

global collector thread
non-moving mark/sweep arena
periodically does mark
marks known shared structures (class table, symbol table, dispatch
tables)
asks mutators for global roots
processes them until all roots have been found
then can proceed to sweep

...



Memory management

mutator threads
copying collector
private nursery (includes stack)
2 teen arenas - n copies before promotion
when prompted, finds next 100 refs to global stack, then blocks,
repeat
then can proceed

I/O threads
maintains list of current shared buffers while I/O blocked

global collector thread
non-moving mark/sweep arena
periodically does mark
marks known shared structures (class table, symbol table, dispatch
tables)
asks mutators for global roots
processes them until all roots have been found
then can proceed to sweep

...



Memory management

mutator threads
copying collector
private nursery (includes stack)
2 teen arenas - n copies before promotion
when prompted, finds next 100 refs to global stack, then blocks,
repeat
then can proceed

I/O threads
maintains list of current shared buffers while I/O blocked

global collector thread
non-moving mark/sweep arena
periodically does mark
marks known shared structures (class table, symbol table, dispatch
tables)
asks mutators for global roots
processes them until all roots have been found
then can proceed to sweep

...



Memory management

mutator threads
copying collector
private nursery (includes stack)
2 teen arenas - n copies before promotion
when prompted, finds next 100 refs to global stack, then blocks,
repeat
then can proceed

I/O threads
maintains list of current shared buffers while I/O blocked

global collector thread
non-moving mark/sweep arena
periodically does mark
marks known shared structures (class table, symbol table, dispatch
tables)
asks mutators for global roots
processes them until all roots have been found
then can proceed to sweep

...



Memory management

mutator threads
copying collector
private nursery (includes stack)
2 teen arenas - n copies before promotion
when prompted, finds next 100 refs to global stack, then blocks,
repeat
then can proceed

I/O threads
maintains list of current shared buffers while I/O blocked

global collector thread
non-moving mark/sweep arena
periodically does mark
marks known shared structures (class table, symbol table, dispatch
tables)
asks mutators for global roots
processes them until all roots have been found
then can proceed to sweep

...



Memory management

mutator threads
copying collector
private nursery (includes stack)
2 teen arenas - n copies before promotion
when prompted, finds next 100 refs to global stack, then blocks,
repeat
then can proceed

I/O threads
maintains list of current shared buffers while I/O blocked

global collector thread
non-moving mark/sweep arena
periodically does mark
marks known shared structures (class table, symbol table, dispatch
tables)
asks mutators for global roots
processes them until all roots have been found
then can proceed to sweep

...



Memory management

mutator threads
copying collector
private nursery (includes stack)
2 teen arenas - n copies before promotion
when prompted, finds next 100 refs to global stack, then blocks,
repeat
then can proceed

I/O threads
maintains list of current shared buffers while I/O blocked

global collector thread
non-moving mark/sweep arena
periodically does mark
marks known shared structures (class table, symbol table, dispatch
tables)
asks mutators for global roots
processes them until all roots have been found
then can proceed to sweep

...



Memory management

mutator threads
copying collector
private nursery (includes stack)
2 teen arenas - n copies before promotion
when prompted, finds next 100 refs to global stack, then blocks,
repeat
then can proceed

I/O threads
maintains list of current shared buffers while I/O blocked

global collector thread
non-moving mark/sweep arena
periodically does mark
marks known shared structures (class table, symbol table, dispatch
tables)
asks mutators for global roots
processes them until all roots have been found
then can proceed to sweep

...



Memory management

mutator threads
copying collector
private nursery (includes stack)
2 teen arenas - n copies before promotion
when prompted, finds next 100 refs to global stack, then blocks,
repeat
then can proceed

I/O threads
maintains list of current shared buffers while I/O blocked

global collector thread
non-moving mark/sweep arena
periodically does mark
marks known shared structures (class table, symbol table, dispatch
tables)
asks mutators for global roots
processes them until all roots have been found
then can proceed to sweep

...



Memory management

mutator threads
copying collector
private nursery (includes stack)
2 teen arenas - n copies before promotion
when prompted, finds next 100 refs to global stack, then blocks,
repeat
then can proceed

I/O threads
maintains list of current shared buffers while I/O blocked

global collector thread
non-moving mark/sweep arena
periodically does mark
marks known shared structures (class table, symbol table, dispatch
tables)
asks mutators for global roots
processes them until all roots have been found
then can proceed to sweep

...



Memory management

mutator threads
copying collector
private nursery (includes stack)
2 teen arenas - n copies before promotion
when prompted, finds next 100 refs to global stack, then blocks,
repeat
then can proceed

I/O threads
maintains list of current shared buffers while I/O blocked

global collector thread
non-moving mark/sweep arena
periodically does mark
marks known shared structures (class table, symbol table, dispatch
tables)
asks mutators for global roots
processes them until all roots have been found
then can proceed to sweep

...



Memory management

mutator threads
copying collector
private nursery (includes stack)
2 teen arenas - n copies before promotion
when prompted, finds next 100 refs to global stack, then blocks,
repeat
then can proceed

I/O threads
maintains list of current shared buffers while I/O blocked

global collector thread
non-moving mark/sweep arena
periodically does mark
marks known shared structures (class table, symbol table, dispatch
tables)
asks mutators for global roots
processes them until all roots have been found
then can proceed to sweep

...



Memory management

mutator threads
copying collector
private nursery (includes stack)
2 teen arenas - n copies before promotion
when prompted, finds next 100 refs to global stack, then blocks,
repeat
then can proceed

I/O threads
maintains list of current shared buffers while I/O blocked

global collector thread
non-moving mark/sweep arena
periodically does mark
marks known shared structures (class table, symbol table, dispatch
tables)
asks mutators for global roots
processes them until all roots have been found
then can proceed to sweep

...



Memory management

mutator threads
copying collector
private nursery (includes stack)
2 teen arenas - n copies before promotion
when prompted, finds next 100 refs to global stack, then blocks,
repeat
then can proceed

I/O threads
maintains list of current shared buffers while I/O blocked

global collector thread
non-moving mark/sweep arena
periodically does mark
marks known shared structures (class table, symbol table, dispatch
tables)
asks mutators for global roots
processes them until all roots have been found
then can proceed to sweep

...



... Memory management

global collector for non-moving mark-&-sweep
uses Fibonacci heap (similar to Mist)
large objects (e.g. 16Kib) have separately mapped pages (allows
mmap of large files) to minimize memory creep



... Memory management

global collector for non-moving mark-&-sweep
uses Fibonacci heap (similar to Mist)
large objects (e.g. 16Kib) have separately mapped pages (allows
mmap of large files) to minimize memory creep



... Memory management

global collector for non-moving mark-&-sweep
uses Fibonacci heap (similar to Mist)
large objects (e.g. 16Kib) have separately mapped pages (allows
mmap of large files) to minimize memory creep



Heap objects

header
Bits What Characteristics
12 length number of long-words beyond the header
4 age 0 - nursery, 1-7 teen, 8+ global
8 format

24 identityHash
16 classIndex LSB

recognize pointer-free instance variables and arrays separately
length of 4095 - forwarding pointer - copying, become:, promoted
format is somewhat similar to SPUR encoding - various-sized
non-object arrays
strings stored in UTF-8



Heap objects

header
Bits What Characteristics
12 length number of long-words beyond the header
4 age 0 - nursery, 1-7 teen, 8+ global
8 format

24 identityHash
16 classIndex LSB

recognize pointer-free instance variables and arrays separately
length of 4095 - forwarding pointer - copying, become:, promoted
format is somewhat similar to SPUR encoding - various-sized
non-object arrays
strings stored in UTF-8



Heap objects

header
Bits What Characteristics
12 length number of long-words beyond the header
4 age 0 - nursery, 1-7 teen, 8+ global
8 format

24 identityHash
16 classIndex LSB

recognize pointer-free instance variables and arrays separately
length of 4095 - forwarding pointer - copying, become:, promoted
format is somewhat similar to SPUR encoding - various-sized
non-object arrays
strings stored in UTF-8



Heap objects

header
Bits What Characteristics
12 length number of long-words beyond the header
4 age 0 - nursery, 1-7 teen, 8+ global
8 format

24 identityHash
16 classIndex LSB

recognize pointer-free instance variables and arrays separately
length of 4095 - forwarding pointer - copying, become:, promoted
format is somewhat similar to SPUR encoding - various-sized
non-object arrays
strings stored in UTF-8



Heap objects

header
Bits What Characteristics
12 length number of long-words beyond the header
4 age 0 - nursery, 1-7 teen, 8+ global
8 format

24 identityHash
16 classIndex LSB

recognize pointer-free instance variables and arrays separately
length of 4095 - forwarding pointer - copying, become:, promoted
format is somewhat similar to SPUR encoding - various-sized
non-object arrays
strings stored in UTF-8



Unified dispatch

single level of hashing for method dispatch
each class dispatch table has entry for every method it has been
sent - regardless of place in hierarchy
near-perfect hash using Φ hashing
standard SPUR/OpenVM optimizations don’t work well in
multi-core environments



Unified dispatch

single level of hashing for method dispatch
each class dispatch table has entry for every method it has been
sent - regardless of place in hierarchy
near-perfect hash using Φ hashing
standard SPUR/OpenVM optimizations don’t work well in
multi-core environments



Unified dispatch

single level of hashing for method dispatch
each class dispatch table has entry for every method it has been
sent - regardless of place in hierarchy
near-perfect hash using Φ hashing
standard SPUR/OpenVM optimizations don’t work well in
multi-core environments



Unified dispatch

single level of hashing for method dispatch
each class dispatch table has entry for every method it has been
sent - regardless of place in hierarchy
near-perfect hash using Φ hashing
standard SPUR/OpenVM optimizations don’t work well in
multi-core environments



High performance Inlining

references to self / super code are inlined
methods with small number of implementations are inlined - rather
than heuristic
prevents creation of many blocks
provides large compilation units for optimization



High performance Inlining

references to self / super code are inlined
methods with small number of implementations are inlined - rather
than heuristic
prevents creation of many blocks
provides large compilation units for optimization



High performance Inlining

references to self / super code are inlined
methods with small number of implementations are inlined - rather
than heuristic
prevents creation of many blocks
provides large compilation units for optimization



High performance Inlining

references to self / super code are inlined
methods with small number of implementations are inlined - rather
than heuristic
prevents creation of many blocks
provides large compilation units for optimization



Code Generation

no interpreter, 3 code generation models
threaded-execution

method is sequence of Zig function addresses
uses Zig tail-call-elimination - passes pc, sp, hp, thread, context
primitives and control implementations

stand-alone generator
generates Zig code for methods
depends on Zig inlining and excellent code generation

JIT
future
LLVM jitter



Code Generation

no interpreter, 3 code generation models
threaded-execution

method is sequence of Zig function addresses
uses Zig tail-call-elimination - passes pc, sp, hp, thread, context
primitives and control implementations

stand-alone generator
generates Zig code for methods
depends on Zig inlining and excellent code generation

JIT
future
LLVM jitter



Code Generation

no interpreter, 3 code generation models
threaded-execution

method is sequence of Zig function addresses
uses Zig tail-call-elimination - passes pc, sp, hp, thread, context
primitives and control implementations

stand-alone generator
generates Zig code for methods
depends on Zig inlining and excellent code generation

JIT
future
LLVM jitter



Code Generation

no interpreter, 3 code generation models
threaded-execution

method is sequence of Zig function addresses
uses Zig tail-call-elimination - passes pc, sp, hp, thread, context
primitives and control implementations

stand-alone generator
generates Zig code for methods
depends on Zig inlining and excellent code generation

JIT
future
LLVM jitter



Code Generation

no interpreter, 3 code generation models
threaded-execution

method is sequence of Zig function addresses
uses Zig tail-call-elimination - passes pc, sp, hp, thread, context
primitives and control implementations

stand-alone generator
generates Zig code for methods
depends on Zig inlining and excellent code generation

JIT
future
LLVM jitter



Code Generation

no interpreter, 3 code generation models
threaded-execution

method is sequence of Zig function addresses
uses Zig tail-call-elimination - passes pc, sp, hp, thread, context
primitives and control implementations

stand-alone generator
generates Zig code for methods
depends on Zig inlining and excellent code generation

JIT
future
LLVM jitter



Code Generation

no interpreter, 3 code generation models
threaded-execution

method is sequence of Zig function addresses
uses Zig tail-call-elimination - passes pc, sp, hp, thread, context
primitives and control implementations

stand-alone generator
generates Zig code for methods
depends on Zig inlining and excellent code generation

JIT
future
LLVM jitter



Code Generation

no interpreter, 3 code generation models
threaded-execution

method is sequence of Zig function addresses
uses Zig tail-call-elimination - passes pc, sp, hp, thread, context
primitives and control implementations

stand-alone generator
generates Zig code for methods
depends on Zig inlining and excellent code generation

JIT
future
LLVM jitter



Code Generation

no interpreter, 3 code generation models
threaded-execution

method is sequence of Zig function addresses
uses Zig tail-call-elimination - passes pc, sp, hp, thread, context
primitives and control implementations

stand-alone generator
generates Zig code for methods
depends on Zig inlining and excellent code generation

JIT
future
LLVM jitter



Code Generation

no interpreter, 3 code generation models
threaded-execution

method is sequence of Zig function addresses
uses Zig tail-call-elimination - passes pc, sp, hp, thread, context
primitives and control implementations

stand-alone generator
generates Zig code for methods
depends on Zig inlining and excellent code generation

JIT
future
LLVM jitter



Code Generation

no interpreter, 3 code generation models
threaded-execution

method is sequence of Zig function addresses
uses Zig tail-call-elimination - passes pc, sp, hp, thread, context
primitives and control implementations

stand-alone generator
generates Zig code for methods
depends on Zig inlining and excellent code generation

JIT
future
LLVM jitter



Conclusions

while the intent of this paper is to provide design principles, also
described some implementation
this is preliminary work, so some open questions
many experiments to run to validate my intuitions



Conclusions

while the intent of this paper is to provide design principles, also
described some implementation
this is preliminary work, so some open questions
many experiments to run to validate my intuitions



Conclusions

while the intent of this paper is to provide design principles, also
described some implementation
this is preliminary work, so some open questions
many experiments to run to validate my intuitions



Questions?

@DrDaveMason dmason@ryerson.ca

https://github.com/dvmason/Zag-Smalltalk


