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S+E F F F Type
0000 0000 0000 0000 double +0
0000-7FEF xxxx xxxx xxxx double (positive)
7FF0 0000 0000 0000 +inf
7FF0-F xxxx xxxx xxxx NaN (unused)
8000 0000 0000 0000 double -0
8000-FFEF xxxx xxxx xxxx double (negative)
FFF0 0000 0000 0000 -inf
FFF0-5 xxxx xxxx xxxx NaN (currently unused)
FFF6 xxxx xxxx xxxx heap object
FFF7 0001 xxxx xxxx reserved (tag = Object)
FFF7 0002 xxxx xxxx reserved (tag = SmallInteger)
FFF7 0003 xxxx xxxx reserved (tag = Double)
FFF7 0004 0001 0000 False
FFF7 0005 0010 0001 True
FFF7 0006 0100 0002 UndefinedObject
FFF7 0007 aaxx xxxx Symbol
FFF7 0008 00xx xxxx Character
FFF8-F xxxx xxxx xxxx SmallInteger
FFF8 0000 0000 0000 SmallInteger minVal
FFFC 0000 0000 0000 SmallInteger 0
FFFF FFFF FFFF FFFF SmallInteger maxVal



nil, false, and true: sole representatives. could do any class with only a 32 bit payload



Symbols: low 24: symbol #; 8:arity; together are hash value



SmallInteger: 51-bit; comparison works naturally; adding/subtracting a normal integer works naturally; others in the paper
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Questions?

@DrDaveMason dmason@ryerson.ca

https://github.com/dvmason/Zag-Smalltalk


