Design Principles for a High-Performance Smalltalk

Dave Mason
Toronto Metropolitan Universityi

©2022 Dave Mason @

Toronto
Metropolitan
University

https://creativecommons.org/licenses/by-nc-sa/4.0/

@ Large memories

@ Large memories
@ 64-bit and IEEE-768

@ Large memories
@ 64-bit and IEEE-768
@ Multi-core and threading

@ Large memories

@ 64-bit and IEEE-768

@ Multi-core and threading
@ Fast execution

@ from-scratch implementation

@ from-scratch implementation
@ low-level is implemented in Zig

@ from-scratch implementation
@ low-level is implemented in Zig
@ goal is to support existing OpenSmalltalk systems

@ from-scratch implementation

@ low-level is implemented in Zig

@ goal is to support existing OpenSmalltalk systems
@ don’t want to rewrite userland!

@ 64 bit

@ 64 bit
@ NaN-boxing

exponent fraction
5|gn (11 bit) (52 bit)

6 5

Immediate Values

@ 64 bit
@ NaN-boxing

@ double-floats, 51-bit Smalllnteger, Booleans, nil, Unicode
characters, Symbols

exponent fraction
sign (11 bit) (52 bit)
I 1T |
i mmnmnmmmnm
[5) [5) o
63 52 0

Immediate Values

@ 64 bit
@ NaN-boxing

@ double-floats, 51-bit Smalllnteger, Booleans, nil, Unicode
characters, Symbols

@ room for instances of any type with single 32-bit value

exponent fraction
sign (11 bit) (52 bit)
I 1T |
i mmnmnmmmnm
[5) [5) o
63 52 0

S+E F F F Type

0000 0000 | 0000 | 0000 | double +0

0000-7FEF | xxxx | xxxx | xxxx | double (positive)

7FFO 0000 | 0000 | 0000 | +inf

7FFO-F XxxXx | xxxx | xxxx | NaN (unused)

8000 0000 | 0000 | 0000 | double -0

8000-FFEF | xxxx | xxxx | xxxx | double (negative)
FFFO 0000 | 0000 | 0000 | -inf

FFFO-5 xxxX | xxxx | xxxx | NaN (currently unused)
FFF6 XXXX | XXxX | xxxx | heap object

FFF7 0001 | xxxx | xxxx | reserved (tag = Object)
FFF7 0002 | xxxx | xxxx | reserved (tag = Smallinteger)
FFF7 0003 | xxxx | xxxx | reserved (tag = Double)
FFF7 0004 | 0001 | 0000 | False

FFF7 0005 | 0010 | 0001 | True

FFF7 0006 | 0100 | 0002 | UndefinedObject

FFF7 0007 | aaxx | xxxx | Symbol

FFF7 0008 | 00xx | xxxx | Character

FFF8-F XXXX | xxxx | xxxx | Smalllnteger

FFF8 0000 | 0000 | 0000 | Smallinteger minVal
FFFC 0000 | 0000 | 0000 | Smallinteger O

FFFF FFFF | FFFF | FFFF | Smalllnteger maxVal

nil, false, and true: sole representatives. could do any class with only a 32 bit payload

Symbols: low 24: symbol #; 8:arity; together are hash value

SmallInteger: 51-bit; comparison works naturally; adding/subtracting a normal integer works naturally; others in the paper

@ only way to speed up applications

potential blocking: memory contention, I/O

@ only way to speed up applications
@ minimal blocking

potential blocking: memory contention, I/O

@ only way to speed up applications
@ minimal blocking
@ computational/mutator threads - typically 1 per core

potential blocking: memory contention, I/O

@ only way to speed up applications

@ minimal blocking

@ computational/mutator threads - typically 1 per core
@ |/O threads - one per open “file”

potential blocking: memory contention, I/O

@ only way to speed up applications

@ minimal blocking

@ computational/mutator threads - typically 1 per core
@ |/O threads - one per open “file”

@ global collector thread

potential blocking: memory contention, I/O

@ mutator threads

@ mutator threads
@ copying collector

@ mutator threads

@ copying collector
e private nursery (includes stack)

@ mutator threads
@ copying collector
@ private nursery (includes stack)
e 2 teen arenas - n copies before promotion

@ mutator threads

@ copying collector

@ private nursery (includes stack)

e 2 teen arenas - n copies before promotion

e when prompted, finds next 100 refs to global stack, then blocks,
repeat

@ mutator threads

@ copying collector

@ private nursery (includes stack)

e 2 teen arenas - n copies before promotion

e when prompted, finds next 100 refs to global stack, then blocks,
repeat

then can proceed

@ mutator threads

@ copying collector

@ private nursery (includes stack)

e 2 teen arenas - n copies before promotion

e when prompted, finds next 100 refs to global stack, then blocks,
repeat

e then can proceed

@ |/O threads

@ mutator threads

@ copying collector

@ private nursery (includes stack)

e 2 teen arenas - n copies before promotion

e when prompted, finds next 100 refs to global stack, then blocks,
repeat

e then can proceed

@ |/O threads
@ maintains list of current shared buffers while I/O blocked

@ mutator threads
@ copying collector
@ private nursery (includes stack)
e 2 teen arenas - n copies before promotion
e when prompted, finds next 100 refs to global stack, then blocks,
repeat
e then can proceed

@ |/O threads
e maintains list of current shared buffers while /O blocked
@ global collector thread

Memory management

@ mutator threads

@ copying collector

e private nursery (includes stack)

e 2 teen arenas - n copies before promotion

e when prompted, finds next 100 refs to global stack, then blocks,

repeat

e then can proceed
@ |/O threads

e maintains list of current shared buffers while I/O blocked
@ global collector thread

@ non-moving mark/sweep arena

Memory management

@ mutator threads
@ copying collector
e private nursery (includes stack)
e 2 teen arenas - n copies before promotion
e when prompted, finds next 100 refs to global stack, then blocks,
repeat
e then can proceed

@ |/O threads
e maintains list of current shared buffers while I/O blocked
@ global collector thread

@ non-moving mark/sweep arena
e periodically does mark

Memory management

@ mutator threads
@ copying collector
private nursery (includes stack)
2 teen arenas - n copies before promotion
when prompted, finds next 100 refs to global stack, then blocks,
repeat
e then can proceed

@ |/O threads
e maintains list of current shared buffers while I/O blocked
@ global collector thread

@ non-moving mark/sweep arena

e periodically does mark

e marks known shared structures (class table, symbol table, dispatch
tables)

Memory management

@ mutator threads
@ copying collector
private nursery (includes stack)
2 teen arenas - n copies before promotion
when prompted, finds next 100 refs to global stack, then blocks,
repeat
e then can proceed

@ |/O threads
e maintains list of current shared buffers while 1/0 blocked
@ global collector thread
@ non-moving mark/sweep arena
e periodically does mark
e marks known shared structures (class table, symbol table, dispatch
tables)
e asks mutators for global roots

Memory management

@ mutator threads
@ copying collector
private nursery (includes stack)
2 teen arenas - n copies before promotion
when prompted, finds next 100 refs to global stack, then blocks,
repeat
e then can proceed

@ |/O threads
e maintains list of current shared buffers while I/O blocked
@ global collector thread
@ non-moving mark/sweep arena
e periodically does mark
e marks known shared structures (class table, symbol table, dispatch
tables)
asks mutators for global roots
processes them until all roots have been found

Memory management

@ mutator threads
@ copying collector
private nursery (includes stack)
2 teen arenas - n copies before promotion
when prompted, finds next 100 refs to global stack, then blocks,
repeat
e then can proceed

@ |/O threads
e maintains list of current shared buffers while I/O blocked
@ global collector thread
@ non-moving mark/sweep arena
e periodically does mark
e marks known shared structures (class table, symbol table, dispatch
tables)
e asks mutators for global roots
processes them until all roots have been found
e then can proceed to sweep

Memory management

@ mutator threads
@ copying collector
private nursery (includes stack)
2 teen arenas - n copies before promotion
when prompted, finds next 100 refs to global stack, then blocks,
repeat
e then can proceed

@ |/O threads
e maintains list of current shared buffers while I/O blocked
@ global collector thread
@ non-moving mark/sweep arena
e periodically does mark
e marks known shared structures (class table, symbol table, dispatch
tables)
e asks mutators for global roots
processes them until all roots have been found
e then can proceed to sweep

@ global collector for non-moving mark-&-sweep

@ global collector for non-moving mark-&-sweep
@ uses Fibonacci heap (similar to Mist)

@ global collector for non-moving mark-&-sweep
@ uses Fibonacci heap (similar to Mist)

@ large objects (e.g. 16Kib) have separately mapped pages (allows
mmap of large files) to minimize memory creep

@ header
Bits | What Characteristics
12 | length number of long-words beyond the header
4 | age 0 - nursery, 1-7 teen, 8+ global
8 | format
24 | identityHash
16 | classIindex LSB

@ header
Bits | What Characteristics
12 | length number of long-words beyond the header
4 | age 0 - nursery, 1-7 teen, 8+ global
8 | format
24 | identityHash
16 | classIindex LSB

@ recognize pointer-free instance variables and arrays separately

Heap objects

@ header
Bits | What Characteristics
12 | length number of long-words beyond the header
4 | age 0 - nursery, 1-7 teen, 8+ global
8 | format
24 | identityHash
16 | classIindex LSB

@ recognize pointer-free instance variables and arrays separately
@ length of 4095 - forwarding pointer - copying, become :, promoted

Heap objects

@ header
Bits | What Characteristics
12 | length number of long-words beyond the header
4 | age 0 - nursery, 1-7 teen, 8+ global
8 | format
24 | identityHash
16 | classIindex LSB

@ recognize pointer-free instance variables and arrays separately

@ length of 4095 - forwarding pointer - copying, become :, promoted

@ format is somewhat similar to SPUR encoding - various-sized
non-object arrays

Heap objects

@ header
Bits | What Characteristics
12 | length number of long-words beyond the header
4 | age 0 - nursery, 1-7 teen, 8+ global
8 | format
24 | identityHash
16 | classIindex LSB

@ recognize pointer-free instance variables and arrays separately

@ length of 4095 - forwarding pointer - copying, become :, promoted

@ format is somewhat similar to SPUR encoding - various-sized
non-object arrays

@ strings stored in UTF-8

@ single level of hashing for method dispatch

@ single level of hashing for method dispatch

@ each class dispatch table has entry for every method it has been
sent - regardless of place in hierarchy

@ single level of hashing for method dispatch

@ each class dispatch table has entry for every method it has been
sent - regardless of place in hierarchy

@ near-perfect hash using ¢ hashing

Unified dispatch

@ single level of hashing for method dispatch

@ each class dispatch table has entry for every method it has been
sent - regardless of place in hierarchy

@ near-perfect hash using ¢ hashing

@ standard SPUR/OpenVM optimizations don’t work well in
multi-core environments

@ references to self / super code are inlined

@ references to self / super code are inlined

@ methods with small number of implementations are inlined - rather
than heuristic

@ references to self / super code are inlined

@ methods with small number of implementations are inlined - rather
than heuristic

@ prevents creation of many blocks

@ references to self / super code are inlined

@ methods with small number of implementations are inlined - rather
than heuristic

@ prevents creation of many blocks
@ provides large compilation units for optimization

@ no interpreter, 3 code generation models

@ no interpreter, 3 code generation models
@ threaded-execution

@ no interpreter, 3 code generation models
@ threaded-execution
e method is sequence of Zig function addresses

@ no interpreter, 3 code generation models
@ threaded-execution

e method is sequence of Zig function addresses
@ uses Zig tail-call-elimination - passes pc, sp, hp, thread, context

@ no interpreter, 3 code generation models
@ threaded-execution

e method is sequence of Zig function addresses
@ uses Zig tail-call-elimination - passes pc, sp, hp, thread, context
e primitives and control implementations

@ no interpreter, 3 code generation models
@ threaded-execution

e method is sequence of Zig function addresses
@ uses Zig tail-call-elimination - passes pc, sp, hp, thread, context
e primitives and control implementations

@ stand-alone generator

@ no interpreter, 3 code generation models
@ threaded-execution
e method is sequence of Zig function addresses
@ uses Zig tail-call-elimination - passes pc, sp, hp, thread, context
e primitives and control implementations
@ stand-alone generator
@ generates Zig code for methods

Code Generation

@ no interpreter, 3 code generation models

@ threaded-execution
e method is sequence of Zig function addresses
e uses Zig tail-call-elimination - passes pc, sp, hp, thread, context
e primitives and control implementations

@ stand-alone generator

e generates Zig code for methods
e depends on Zig inlining and excellent code generation

Code Generation

@ no interpreter, 3 code generation models
@ threaded-execution
e method is sequence of Zig function addresses
e uses Zig tail-call-elimination - passes pc, sp, hp, thread, context
e primitives and control implementations
@ stand-alone generator
e generates Zig code for methods
e depends on Zig inlining and excellent code generation

o JIT

Code Generation

@ no interpreter, 3 code generation models

@ threaded-execution
e method is sequence of Zig function addresses
e uses Zig tail-call-elimination - passes pc, sp, hp, thread, context
e primitives and control implementations

@ stand-alone generator

e generates Zig code for methods
e depends on Zig inlining and excellent code generation

o JIT
o future

Code Generation

@ no interpreter, 3 code generation models
@ threaded-execution
e method is sequence of Zig function addresses
e uses Zig tail-call-elimination - passes pc, sp, hp, thread, context
e primitives and control implementations
@ stand-alone generator
e generates Zig code for methods
e depends on Zig inlining and excellent code generation
o JIT

o future
o LLVM jitter

@ while the intent of this paper is to provide design principles, also
described some implementation

@ while the intent of this paper is to provide design principles, also
described some implementation

@ this is preliminary work, so some open questions

@ while the intent of this paper is to provide design principles, also
described some implementation

@ this is preliminary work, so some open questions
@ many experiments to run to validate my intuitions

Questions?

@DrDaveMason dmason@ryerson.ca

https://github.com/dvmason/Zag-Smalltalk

