
Tomohiro Oda,
 Software Research Associates, Inc.
 @ESUG2022, Novi Sad, Serbia, Aug 26, 2022

RE:

MOBIO

re:mobidyc

Multi-Agent Simulation


```
to random_walk is

my d/dt x' = v * cos(theta)

my d/dt y' = v * sin(theta)

where

theta = uniform 0 [degree] to 360 [degree]

v = normal 0 [m/s] sigma the speed.

to swim is

when uniform 0 to 1 < 0.3

my d/dt x' = the speed * cos(my heading)

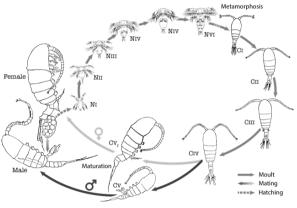
my d/dt y' = the speed * sin(my heading)
```

```
the d/dt heading' = (normal 0 sigma 2) [degree/s].
```

```
task definition -
```

Nauplius random_walk where

the speed -> 0.3[mm/s].


Copepodite swim where

the heading -> my heading the speed -> 1[mm/s].

Expected applications

Ecology

Biology

Ecotoxicology

climate change living marine resource management aquaculture

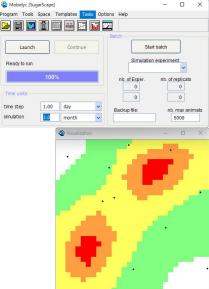
Contributors

Individual Contributors (in alphabetical order)

- Feddal Nordine, Université de Lille
- Gaël Dur, Shizuoka University
- Sami Souissi, Université de Lille
- Serge Stinckwich, UN University
- Stéphane Ducasse, Inria
- Tomohiro Oda, Software Research Associates, Inc.

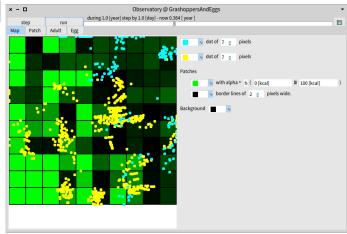
Organizational Supporters

DGtalAqualab Shizuoka University, Japan Key Technology Group Software Research Associates, Inc., Japan


History

MoBIDyC

- on 32bit VisualWorks
- development started in 1996, gained its full form in 2002, and still in use


re:mobidyc

- on 64bit Pharo 10 + petitparser2
- open source at https://github.com/ReMobidyc/ReMobidyc/
- from the same design principles, we re-designed and added new technical elements.

time ster

simulatio

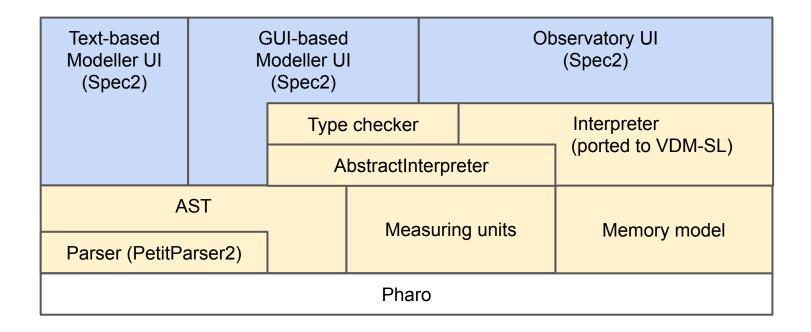
Features inherited from the original MoBIDyC

- discrete-time individual-based simulation
 - Turtles + Cellular Automata
- modeling without programming skills
 - modeling with minimal coding
- 25 primitives from MoBIDyC.
 - move, eat, kill, die, stage, spawn, ...

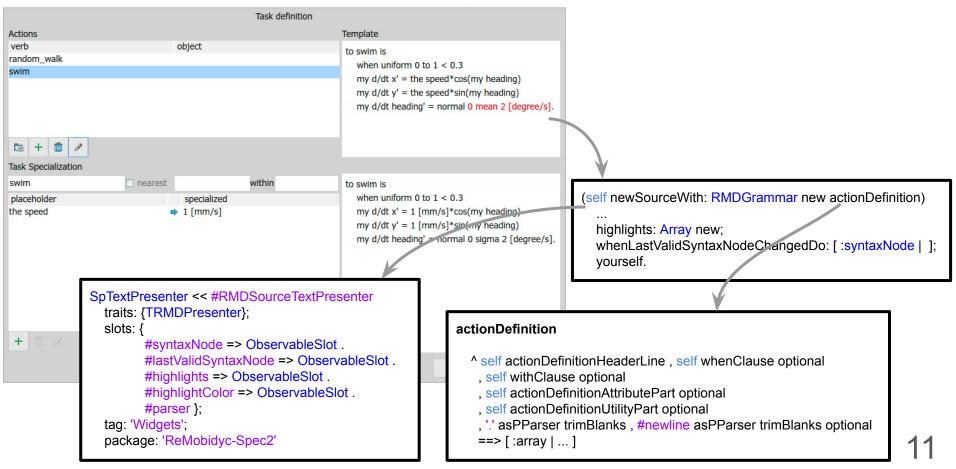
In re:mobidyc, we added a few design principles

- reliable models
 - referential transparency: synchronous updates of variables
 - type checking: check models without testing
 - termination: no infinite loop
- reviewable results
 - traceability : record all attributes of all agents at all time steps
 - reproducibility : always the same result from the same model and the same initial conditions

constructing DSL on Pharo


overview of re:mobidyc

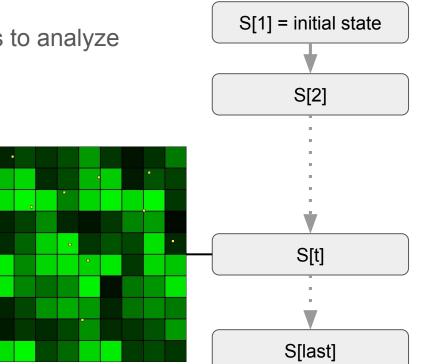
- Original modeling language
 - domain specific modeling language
 - syntax definition
 - formal semantics ... implement in Pharo first, and then specify in formal language (VDM-SL)
 - memory model


• Pharo

- cross platform
- high productivity
- Spec2 and PetitParser2

Implementation Layers

Spec2 + PetitParser2 \rightarrow easy construction of GUI for DSL

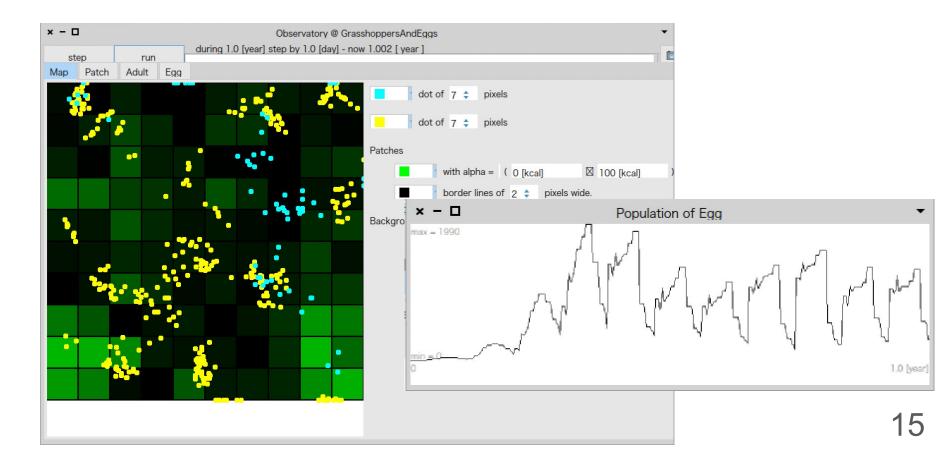

need for original memory model: the time-course matters

The objective of re:mobidyc is to enable users to analyze

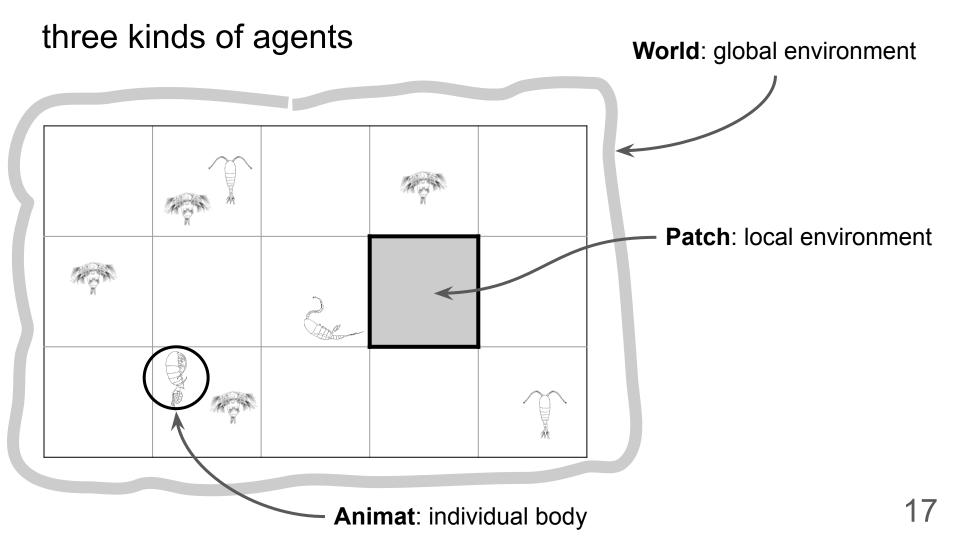
- what happens
- why it happens
- how it happens

We need a memory model with

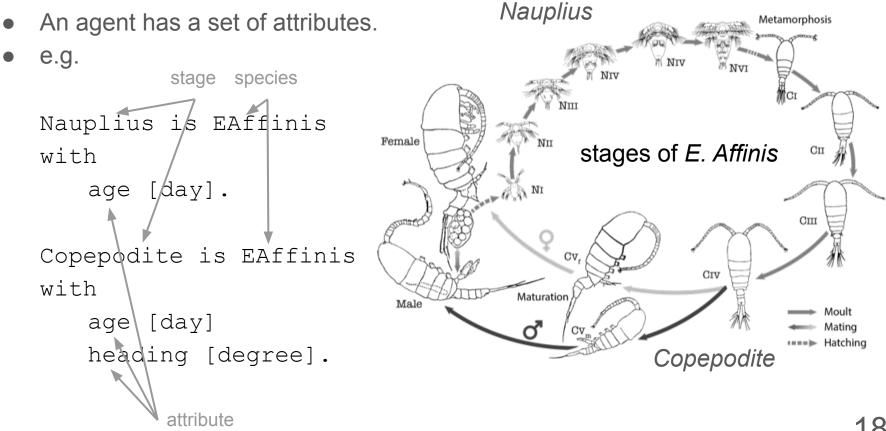
- lightweight snapshot
 - to trace cause and effect
- synchronous update
 - to isolate effects of each action
 - to eliminate intermediate state


UI : Text-based Modeler

× - 🗆	► ■ Modeler @ GrasshoppersAndEggs ▼						
File 🔻							
	Run	Run & Record					
actions agents simulation tasks visualization	to eat is when he here's to move is my d/dt my d/dt where		~				


UI : GUI-based Modeler

× - 🗆	Modeler @ GrasshoppersAndEggs						
File 🔻							
F	Run	Run & Record					
Simulation Conditions	World Patch	Grasshopper × Animat × +					
Adult × +							
rename c	ору						
Attributes		Visualization					
name	unit	dot of 7 💠 pixels					
age	day						
+ 🟛 🥒		+					
Tasks							
		to age is					
age		my Δ age' = Δ time.					
eat							
starve							
move lav.egg							
+ 💼 🖉							


UI: Observatory

modeling with agents

Agents

Interactions

Actions (verb)

- A verb updates attributes of interacting agents.
- A verb is either *vi* or *vt*.

```
updates on attributes
e.g.
        verb
to random walk is
                                                    e.g.
    my d/dt x' = v \star cos(theta)
     my d/dt y' = v * sin(theta)
where
                                                    Nauplius random walk
     theta = uniform 0 [degree] to
                                                    where
360 [degree]
                                                          the speed \rightarrow 0.3[\text{mm/s}].
     v = normal \sqrt{0} sigma the speed.
                local definitions
                                    delta x += v * \cos(\text{theta}) * \text{timestep};
```

Tasks (sentence)

- A task defines interaction among agents.
- A task is either S+V or S+V+O
- The interpreter performs a task for every instance of the subject agent at every time step.

Interactions

Actions (verb)

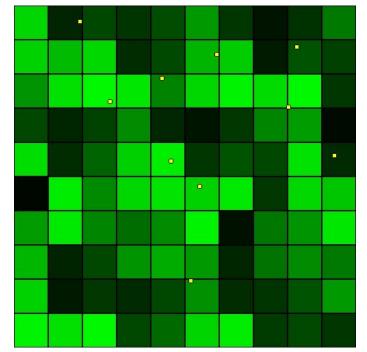
- A verb updates attributes of interacting agents.
- A verb is either *vi* or *vt*.

• e.g.

```
to random_walk is
    my d/dt x' = v * cos(theta)
    my d/dt y' = v * sin(theta)
where
    theta = uniform 0 [degree] to
360 [degree]
    v = normal 0 sigma the speed.
```

Tasks (sentence)

- A task defines interaction among agents.
- A task is either S+V or S+V+O
- The interpreter performs a task for every instance of the subject agent at every time step.


major features of the re:mobidyc modeling language

- no messaging
- no inheritance
- **no** become: primitive
- no while-loop
- no recursion
- non-turing complete
- no string, no bool, float is the only first-class object

but has

- static typing
- type casting
- templates
- time-series memory with synchronous update
- termination because no loop!
- instance creation trace

to model interactions among the global environment, local environment patches, and animats. 21

Types in a language where the only FCO is float

static typing with measuring units

Animat definitions

```
Nauplius is EAffinis with
x [m]
y [m]
heading [degree].
```

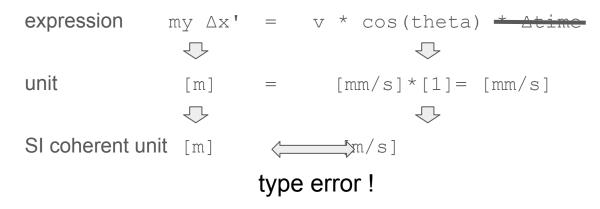
The system converts values into SI coherent units so that all computation will be in coherent SI. Also [rad],[°C], [°F] are handled as SI base units.

Type checking on attribute definitions

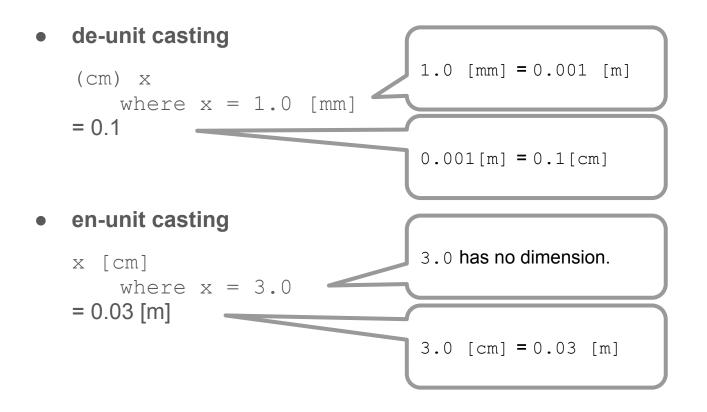
expression my $\Delta x' = v * \cos(\text{theta}) * \Delta \text{time}$ \checkmark \checkmark unit [m] = [mm/s]*[1]*[s] = [mm] \checkmark \checkmark \checkmark SI coherent unit [m] \longleftrightarrow [m] the both types agree

detecting type error

Animat definitions


```
Nauplius is EAffinis with

x [m]

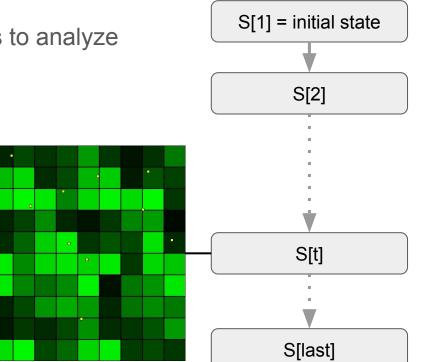

y [m]

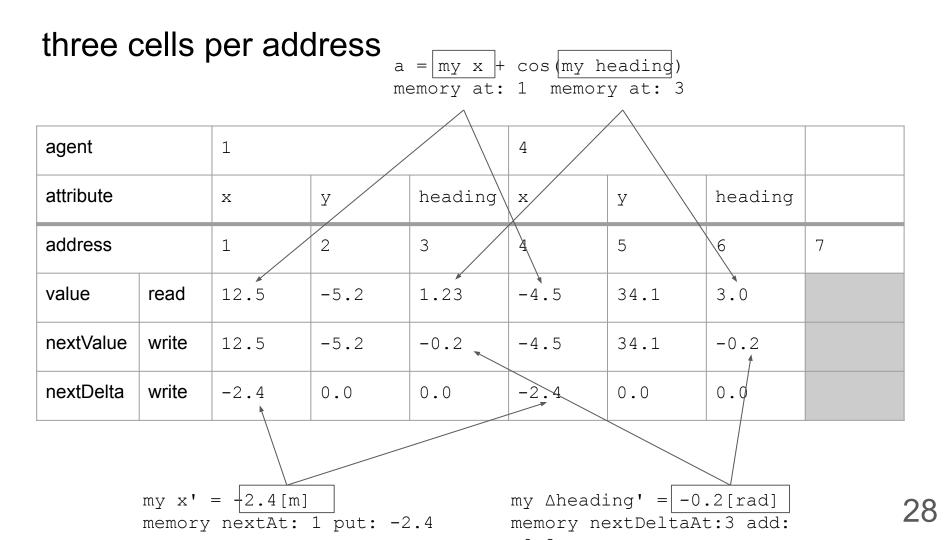
heading [degree].
```

Type checking on attribute definitions

type casting with measuring units

time-series memory with synchronous updates re:mobidyc = computing big sequences of numbers


The time-course matters


The objective of re:mobidyc is to enable users to analyze

- what happens
- why it happens
- how it happens

We need a memory model with

- lightweight snapshot
 - to trace cause and effect
- synchronous update
 - to isolate effects of each action
 - to eliminate intermediate state

synchronous update

time 354

address		1	2	3	4	5	6	7	
value	read	12.5	-5.2	-0.2	-4.5	34.1	3.0		
nextValue	write	12.5	-5.2	-0.2	-4.5	34.1	-0.2		
nextDelta	write	-2.4	0.0	0.0	-2.4	0.0	0.0		
time 355	1								
address		1	2	3	4	5	6	7	
value	read	10.1	-5.2	-0.2	-6.9	34.1	-0.2		
nextValue	write	10.1	-5.2	-0.2	-6.9	34.1	-0.2		
nextDelta	write	0.0	0.0	0.0	0.0	0.0	0.0		29

time-series memory

time 355

address		1	2	3	4	5	6	7	350		
value	read	10.1	-5.2	-0.2	-6.9	34.1	-0.2				
nextValue	write	10.1	-5.2	-0.2	-6.9	34.1	-0.2		351		
nextDelta	write	0.0	0.0	0.0	0.0	0.0	0.0		352		
											3 dictionaries: values, nextValues, nextDelta

backend storage (on-memory, file system, ...)

	address ∖ time	1	2	3	4	5	6	
	350	22.1	-5.2	-4.2	5.1	34.1	-1.5	
	351	19.7	-5.2	-4.2	2.7	34.1	2.3	
	352	17.3	-5.2	3.2	0.3	34.1	5.1	
	353	14.9	-5.2	-5.2	-2.1	34.1	-5.2	
	354	12.5	-5.2	1.23	-4.5	34.1	3.0	
	355	10.1	-5.2	-0.2	-6.9	34.1	-0.2	
	356							
								00
1								30

Summary moving forward

Summary

- multi-agent simulator
 - re:realization of Object Orientation as a modeling language
 - de-centralized autonomous entities interacting each other.
 - open source at <u>https://github.com/ReMobidyc/ReMobidyc/</u>
 - built on Pharo 10
 - for scientific research of biology, ecology and ecotoxicology
- Future work
 - complete 25 primitives from MoBIDyC
 - formal specification
 - memory models with DBMS backends (RDB, GemStone/S, and so on)
 - debugger
 - git interface
 - computation server
 - data analysis environment
 - visualization
 - verification

