
LiveCoding
Package for Pharo

https://github.com/lucretiomsp/PharoLiveCoding

Domenico Cipriani

On-the-fly programming music
(or Live Coding)
• Increasingly popular creative practice for audio-visual creation.

• The figure of the live coder is who performs the act of live coding, “usually
artists who want to learn the code, and coders who want to express
themselves, or in terms of Wang & Cook the “programmer/performer/
composer”

•On-the-fly promotes live coding practice since 2020. This is a project co-
funded by the Creative European program and run in Hangar, ZKM, Ljudmila
and Creative Code Utrecht

•TOPLAP (The (Temporary|Transnational|Terrestrial|Transdimensional)
Organisation for the (Promotion|Proliferation|Permanence|Purity) of Live
(Algorithm|Audio|Art|Artistic) Programming) is an informal organization
formed in February 2004 to bring together the various communities that had
formed around live coding environments.

• Typically, the process of writing source code is made visible by projecting the
computer screen in the audience space, with ways of visualising the code an
area of active research.

• “If the only tool you have is an hammer,
everything looks like a nail” (Abraham Maslow)

• “The most disastrous thing that you can ever learn
is your first programming language” (Alan Kay)

Why Pharo?

• For Smalltalk!

• Arrays are at the core of electronic music, their manipulation in Pharo is
extremely powerful.

• Because the Playground is the perfect environment for Live Coding.

• Because there are not other pure Object Oriented languages for Live
Coding.

• For its expressiveness and reflectiveness.

• Because new methods and classes are created easily and always
available to the system (i.e. no headers, no extra dependence, no tedious
file management).

Symbolic Sound Kyma
• Music programming language and IDE written in

Smalltalk created by Carla Scaletti and Kurt J.
Hebel at Urbana Champaign, Illinois.

• The Smalltalk code is
compiled on an external
DSP called Paca(rana)

• M o s t p r o b a b l y :) i t s d e v e l o p e d o n
Objectworks\Smalltalk, Release 4.1 of 15 April
1992

• “The Holy Grail of sound
design”

Kyma 7

• “L’unico principio primario in ogni azione umana, é il dispendio
del minimo sforzo per portare a termine un compito” (George
Zipf)

• “L’iconicitá é la relazione di somiglianza tra i due aspetti di un
segno: la sua forma e il suo significato. Un segno iconico é un
segno che in qualche modo assomiglia al suo significato” (Meir)

2 principi: economia e trasparenza

• La sintassi di Smalltalk può stare su una cartolina, mentre la sua
semantica può essere letta come un pidgin English ed é
pensata per i bambini

Principi della programmazione orientata agli oggetti
(Object Oriented Programming / OOP)

• Incapsulamento

• Astrazione

• Ereditarietà

• Polimorfismo (late binding)

• A front-end to write real time scores for a real-time audio
synthesis backend (via OSC) or a MIDI device

• A DSL to write quickly and easily rhythmical patterns and
melodies

What is the LiveCoding Package?

• An ethnomusical quick-guide

• The sound generators created on the backend must adhere to
the LiveCoding Package syntax (!InstrumentGate ! /
InstrumentNote / !InstrumentDuration / !InstrumentExtra1)

P e r f o r m a n c e : a s u b c l a s s o f
D ict ionary that wi l l conta ins
instances of the Sequencer class or
arrays

Sequencer
Gates

Notes

Durations

Extra1 (optional)

Extra2 (optional)

noteIndex

Process - Performance - Sequence - Rhythm

• Performance is a subclass of Dictionary.
• It contains association of Symbols and Arrays or Sequences

• Sequencer is an Object whose main instance variables are: Gates,
NoteNumbers, Durations, Extra1, Extra2.

It is created sending the message asSeq to an instance of the Rhythm

• Rhythm is a convenience subclass of Array

• aPerformance playKymasequenceAt: aStepDuration rate: aNumberOfSteps

• The Process forked at timingPriority check if the value of the key in the
performance is a Sequencer or not.

• If the value is a Sequencer, 3 OSC messages are sento to the client:
- appending ‘Gate’, ‘Note’, ‘Duration’ to the key asString

• aPerformance playLocalSequenceAt: aStepDuration rate: aNumberOfSteps

• If it is a Sequencer, the noteIndex of the Sequencer is incremented at every
stepDuration and reset to 1 every time it reaches the size of gates

The L iveCod ing package a lso
contains a collection of Euclidean
world rhythms and musical scales.

• “The only primary principle of every human action, including
verbal communication, is the expenditure of the least amount
of effort to accomplish a task. (George Zipf)

• “Iconicty is the relation of similarity between to aspects of a
sign: its form and its meaning. An iconic sign is a sign that in
some way resembles its meaning.”(Meir)

Economy and transparency

The LiveCoding Package

• Iconicity

•Economy

•Polysemy

• To write music on-the-fly with Pharo

• Also for studio composition: a new kind of musical score

Written code should resemble what we hear

The less we type, the better

PRINCIPLES

Many ways to do the same thing

• Pharo acts as an arranger, another program generates the sound
(Kyma, PureData, MaxMSP, ChucK, SuperCollider, and so on.

• Based on the OpenSoundControl at the moment, but MIDI
implementation on the pipeline

16 upbeats

#(60 63 67) + 16

16 randomsFrom: #(50 54 57)
16 randomNotes: (50 54 47)

OpenSoundControl OSC
• Developed by Adrian Free and Matt Wright at CNMAT at the end of the 90s.

Firs specification published in 2002.

• Flexile, fast and accurate alternative to the MIDI standard..

• Indipendent from the transport mechanism, OSC packets are typically sent
and received thru UDP Sockets.

• Server/Client architecture The server sends the package, the client
receives them.

• An OSC message consists of an OSC Address Pattern, followed by an
OSC Type Tag String, followed by zero or more OSC Arguments (for
example: /frequency,f 0.3).

• At the core of the LiveCoding Package for Pharo.

OpenSoundControl OSC
• The LiveCoding package simplify the creation and dispatching of OSC messages

aNumber toLocal: aString.

aNumber toKyma: aString.

Send to the local host the message:

‘/aString, f aNumber’

Send to the Paca(rana) the message

’/aString, f aNumber’

Step Sequencers

On a Step Sequencer, a step can be active (1) or not active (0).

In the Live Coding package you can create
Sequencer or of numbers by sending
messages to integers, for example:

• 16 zeros

• 64 randoms

• 32 rumba

• 16 quavers

• Sending a message with the name of a scale to the
Scale class returns an array with the intervals of that
scale. For example, Scale sakura returns #(0 1 5 7 8)

Scales!

• BINARY: 1000100010001000

• HEXADECIMAL: 8888

A rhythm can be represented as an array of 0s and 1s, where a 1 represents a
trig.

• SMALLTALK: #(1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0)

• LIVECODINGTALK: 16 downbeats

• LIVECODINGTALK: ‘8888’ pattern

• BINARY: 1001 0001 0010 1000

• HEXADECIMAL: 9128

• SMALLTALK: #(1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0)

• LIVECODINGTALK: 16 rumba

• LIVECODINGTALK: ‘9128’ pattern

• SMALLTALK: #(1 0 1 0 1 0 1 0 1 0 1 0 1 1 1)

• LIVECODINGTALK: 12 quavers, 4 semiquavers

• LIVECODINGTALK: ‘AAAF’ pattern

• BINARY: 1010 1010 1010 1111

• HEXADECIMAL: AAAF

Bars, Bytes, Beats, Nibbles, Steps, Bits
• 4 bits = 1 Nibble / 8 bit = 1 Byte.
• 1 Bar, 16 Steps (1/16th quantisation).
• If every step corrisponds to a Bit of Information, in a Bar we fino 16 Bits, i.e. 2 Bytes.Se.
• In every Bar there are 4 Beats, so in each Beat there are 4 Bits, i.e. 1 Nibble.
• Every Hexadecimal symbol represents a Nibble.

C
D
E
F

B

0
1
2
3
4
5

7
8
9

6

A

Upbeat

Downbeat

Quavers

Semiquavers

• In the spring of 2022, the Pharo team in Lille helped with the development of
MIDI compatibility for the LiveCoding Package.

• A graduating student, Antoine Delaby, tutored by Santiago Bragagnolo,
ported the MIDI output functionality of the C PortMidi library by the means of
the Unified ForeignFunctionInterface provide by Pharo

• It is now possible to send out MIDI noteOn and noteOff messages from
Pharo to external MIDI hardware connected to the host computer.

• The MIDISender object provided by the LiveCoding package is a
convenience object modelled from the MIDIOut object of the ChucK
programming language

MIDI integration

aMIDISender playNote: aNoteNumber onChannel: aMIDIChannel duration: aDurationInSeconds

• aPerformance playMIDISequenceAt: aStepDuration rate: aNumberOfSteps on: aMIDISender

As supercollider frontend

• Super Collider is an environment and programming language originally
released in 1996 by James McCartney for real-time audio synthesis and
algorithmic composition

• It combines the object-oriented structure of Smalltalk, with a C-like
syntax and features from functional programming language

• SuperCollider’s sound generation is bundled into an optimised
command-line executable (named scsynth) that is usually controlled
within the SuperCollider language (sclang), bu that can be controlled via
OpenSoundControl

• A full Pharo front-end for the scsynth server is being developed, to
enable the user to generate synthesiser and effect and control the with
Pharo syntax

Future Challenges
• Tests and DebugDriverDevelopment!
• Documentation, user guide, tutorials

• Optimisation!

• MIDI input management.

• Real polyrhythms (thanks Kasper for the complaint)

• Graphical User Interface easy creation

• Porting of PortAudio C library.

• An audio server running inside Pharo, on the model of SuperCollider

scServer.

• A full programming language inside Pharo capable not only of

algorithmic composition but also of sound production and sound

synthesis - communicating via OSC messages to the internal audio

server.

