
Norbert Hartl ESUG 2022

There's no magic...
... until you talk about databases

"An important thing you need to know about a rule is  
when you should break it"

(Norbert Hartl, ESUG 2022)

Recap: ESUG 2018

tech stack

It
has
grown
…

It
has
grown
small

Three things that can kill a project

1. complexity

Three things that can kill a project

1. complexity

2. complexity

Three things that can kill a project

1. complexity

2. complexity

3. javascript

Three things that can kill a project

tech stack

tech stack - elasticsearch

Events and aggregation
Everyone likes dashboards

Events and aggregation
Everyone likes dashboards

• avoid

Events and aggregation
Everyone likes dashboards

• avoid

• postpone

tech stack - micro services

tech stack - orchestration

Docker swarm & Kubernetes
There is only one advize

Docker swarm & Kubernetes
There is only one advize

• Don't

tech stack - monitoring

„If you have a service that is not monitored you don’t have a

tech stack - containers

tech stack - orchestration

Ansible cheat sheet- name: Deploy apptivegrid API

 community.docker.docker_container:

 name: "apptive-api-{{ item.0+1 }}"

 image: apptivegrid-api:
{{ apptivegrid_api_version }}

 ports:

 - "{{internal_ip}}:{{ item.1 }}:3600"

 volumes:

 - /mnt/apptive_store:/data/apptive

 with_indexed_items:
"{{ apptive_api_ports }}"

backend apptivegrid-api-backend

 balance leastconn

{% for apihost in groups[‚api-group'] %}

{% for port in
hostvars[apihost].apptive_api_ports %}

 server api-…-{{port}} {{ .…internal_ip }}:
{{ port }} check

{% endfor %}

{% endfor %}

[api-group]

apptive1

apptive2

apptive3

hostname: apptive1

internal_ip: 10.1.2.5
apptive_api_ports:
 - 3600
 - 3601- hosts: api-group  

roles:

 - apptivegrid-api

inventory

play

host_vars

apptivegrid-api role

haproxy role

tech stack - load balancer

tech stack

tech stack - database

tech stack - database

wait...

tech stack

Mongo DB
The good parts

• simple document storage

• provides database cluster

• supposed to be web scale

• we have voyage for it

Mongo DB
The not-so-good parts

• JSON supports 6 data types

• BSON supports a few more

• transactions are not part of mongo talk

• single writer vs. sharding

• query DSLs are a drag

Soil
What it needs to be an OO database?

• ACID transaction (with MVCC)

• Regional file locking (row-level locking)

• serialization/materialization

• A b-tree implementation for indexing

• 100% smalltalk

How do we scale that?
Escaping the single machine

• Files are local on a machine

• Opening databases per request is expensive

• File locking enables multi-image usage

• How to scale to more than one machine?

P

DB

Distribute the database
Escape step #1

• Reduce conflict potential

• Partition the model

• Each user has its own database on disk (4kb)
P P P P
P P P P

DBDB
DB

Distribute the database
Escape step #2

• Use a distributed filesystem (GlusterFS)

• Enables multi machine setup

• File locking across the network is not reliable
P P P P
P P P P

P P P P
P P P P

P P P P
P P P P

replicatio replicatio
DBDB DBDB

DB
DB

DB
DB

DB

Distribute the database
Escape step #3

• stateless service

• URI contains partition criteria (/api/users/74827492/...)

• stick on path,word(3,/) if { path_beg /api/users/ }

• each request to the same database goes to the same
image

P P P P
P P P P

P P P P
P P P P

P P P P
P P P P

hapro
xy haproxy

I'm a cloud shape

• 123
-> ...

Request /api/users/123/...

replication replication
DB

DB
DB

DB

DB
DBDB

DB
DB

Request /api/users/456/...

hapro
xy

• 123
-> ...

Escape summary
The complete plan

• Persistence approaches are application specific

• Architecture can provide performance/scalability

• Writing local files does not need to be a blocker

• Pinning writes to one place solves a lot

