
P. Tesone - G. Polito - ESUG’22 
@tesonep 
@guillep

Pharo Virtual 
Machine
News from the Front

����

guillermo.polito@univ-lille.fr
pablo.tesone@inria.fr

mailto:guillermo.polito@univ-lille.fr
mailto:pablo.tesone@inria.fr


2022 VM+ Team

2



Virtual Machine Execution Engine

cold code
hot spot

detection hot code

Interpreted

Execution

Compiled

Execution

Managed Memory

I C

3



ARM64 Backend

• ARM64 is now pervasive:


• New Apple M1


• Raspberry Pi 4


• Microsoft Surface Pro X


• PineBook Pro


• …

move	r1	#1
move	r2	#17
checkSmallInt	
r1checkSmallInt	
r2add	r3	r1	r2
checkSmallInt	
r3move	r1	r3
ret

32bit x86

64bit x86_64

32bit ARMv5-7

64bit ARMv8

JIT compiler IR

4



Working Directly on Real Hardware

• How to do a partial implementation, in an iterative way?


• Hardware availability: did not have access to an Apple M1 
yet


• Slow Change-Compile-Test cycle 

• Bug reproduction is a demanding task

5



Simulation Environment

Production VM (C)

Simulation Environment (Pharo)

Heap

Native Code Cache

Unicorn LLVM 
Disassembler

VM

Interpreter GC JIT Compiler

Transpiled to
Testing 

infrastructure

Miranda	et	al.	

Two	decades	of	smalltalk	vm	development:	live	vm	
development	through	simula:on	tools.		

VMIL’18	

6



Extending Simulation with Unit Tests

Production VM (C)

Simulation Environment (Pharo)

Heap

Native Code Cache

Unicorn LLVM 
Disassembler

VM

Interpreter GC JIT Compiler

Transpiled to
Testing 

infrastructure

7



8

Our testing infrastructure by example

testPushConstantZeroBytecodePushesASmallIntegerZero	
	 	

self	compile:	[	compiler	genPushConstantZeroBytecode	].	 	
self	runGeneratedCode.	

	 	
self	assert:	self	popAddress	equals:	(memory	integerObjectOf:	0)



  Reusable test fixtures covering 
e.g., 

9

Our testing infrastructure by example

testPushConstantZeroBytecodePushesASmallIntegerZero	
	 	

self	compile:	[	compiler	genPushConstantZeroBytecode	].	 	
self	runGeneratedCode.	

	 	
self	assert:	self	popAddress	equals:	(memory	integerObjectOf:	0)

  Reusable test fixtures covering e.g., 
  - trampoline and stub compilation   
  - heap initialization



  Reusable test fixtures covering 
e.g., 

10

Our testing infrastructure by example

testPushConstantZeroBytecodePushesASmallIntegerZero	
	 	

self	compile:	[	compiler	genPushConstantZeroBytecode	].	 	
self	runGeneratedCode.	

	 	
self	assert:	self	popAddress	equals:	(memory	integerObjectOf:	0)

  Reusable test fixtures covering e.g., 
  - trampoline and stub compilation   
  - heap initialization

  Compiler internal 
DSL



testPushConstantZeroBytecodePushesASmallIntegerZero	
	 	

self	compile:	[	compiler	genPushConstantZeroBytecode	].	 	
self	runGeneratedCode.	

	 	
self	assert:	self	popAddress	equals:	(memory	integerObjectOf:	0)

  Compiler internal 
DSL

  JIT Execution helpers such as e.g., 
   - run all code between two addresses 
   - run until the PC hits an address

11

Our testing infrastructure by example
  Reusable test fixtures covering e.g., 
  - trampoline and stub compilation   
  - heap initialization



testPushConstantZeroBytecodePushesASmallIntegerZero	
	 	

self	compile:	[	compiler	genPushConstantZeroBytecode	].	 	
self	runGeneratedCode.	

	 	
self	assert:	self	popAddress	equals:	(memory	integerObjectOf:	0)

Blackbox testing

Depend only on 
observable 
behaviour

Reusable on 
different 

backends /

Resistant to 
changes in the 
implementation

12



testPushConstantZeroBytecodePushesASmallIntegerZero	
	 	

self	compile:	[	compiler	genPushConstantZeroBytecode	].	 	
self	runGeneratedCode.	

	 	
self	assert:	self	popAddress	equals:	(memory	integerObjectOf:	0)

Cross-Compilation, Cross-Execution

Hardware 
independent

Parametrizable 
tests

http://www.unicorn-engine.org

13

http://www.unicorn-engine.org/


There is no silver bullet

• Simulators are cheap, but not 100% trustworthy


• Full execution (simulated or on real HW)


• more expensive to run


• cannot unit-test it (less controllable)


• Unit tests only exercise specific scenarios


• Full executions exercise not yet covered scenarios

14



• Simulate the execution, less than you run tests


• Run the real app, less than you simulate


• Go back and forth:


• Turn full execution failures into tests


• Fix with the aid of the test: 
=> unit test are faster to run 
=> easier to debug 
=> detect regressions

Our testing Workflow

15



Testing & TDDing the VM

• No useful unit tests by ~06/2020


• Large manual testing effort during 2020 while porting to ARM64bits


• Extended VM simulation with a (TDD compatible) unit testing 
infrastructure


• 450+ written tests on the interpreter and the garbage collector*


• 580+ written tests on the JIT compiler*


• Parametrisable for 32 and 64bits, ARM32, ARM64, x86, x86-64

MPLR’21
* Numbers by 05/2021

16



Testing & TDDing the VM

• No useful unit tests by ~06/2020


• Large manual testing effort during 2020 while porting to ARM64bits


• Extended VM simulation with a (TDD compatible) unit testing 
infrastructure


• 450+ written tests on the interpreter and the garbage collector*


• 580+ written tests on the JIT compiler*


• Parametrisable for 32 and 64bits, ARM32, ARM64, x86, x86-64

MPLR’21
* Numbers by 05/2021

1040+ tests, are they enough?

17



How can we automatically test VMs?

cold code
hot spot

detection hot code

Interpreted

Execution

Compiled

Execution

Managed Memory

I C

PLDI’2218



Challenges of VM Test Generation

cold code
hot spot

detection hot code

Interpreted

Execution

Compiled

Execution

Managed Memory

I C

?

• Do they cover different code regions/branches/
paths?


• How do we determine what is the expected output  
of a generated test?

Challenge 
1: Test 

Challenge 
2: Test 

PLDI’2219



cold code
hot spot

detection hot code

Interpreted

Execution

Compiled

Execution

Managed Memory

Test 
Scenarios

1. Test 
Generation

2. Execution 2. Execution

3. Differential Testing

I C

20

Interpreter-Guided Automatic JIT Compiler 
Unit Testing



cold code
hot spot

detection hot code

Interpreted

Execution

Compiled

Execution

Managed Memory

Test 
Scenarios

1. Test 
Generation

2. Execution 2. Execution

3. Differential Testing

I C

21 PLDI’22

Interpreter-Guided Automatic JIT Compiler 
Unit Testing



cold code
hot spot

detection hot code

Interpreted

Execution

Compiled

Execution

Managed Memory

Test 
Scenarios

1. Test

Generation

2. Execution 2. Execution

3. Differential Testing

I C

22 PLDI’22

Interpreter-Guided Automatic JIT Compiler 
Unit Testing



cold code
hot spot

detection hot code

Interpreted

Execution

Compiled

Execution

Managed Memory

Test 
Scenarios

1. Test

Generation

2. Execution 2. Execution

3. Differential Testing

I C

Interpreter-Guided Automatic JIT Compiler 
Unit Testing

PLDI’2223



cold code
hot spot

detection hot code

Interpreted

Execution

Compiled

Execution

Managed Memory

Test 
Scenarios

1. Test 
Generation

2. Execution 2. Execution

3. Differential Testing

I C

Insight 1: Interpreters 
are Executable 

Semantics
=> Concolic Meta-

Interpretation

24 PLDI’22

Interpreter-Guided Automatic JIT Compiler 
Unit Testing



PLDI’2225

Pharo VM Example
Interpreter are Executable Semantics



Interpreter are Executable Semantics
Pharo VM Example

If both operands are 
integers

If their sum does not 
overflow

Else, slow path => 
message send

26 PLDI’22



cold code
hot spot

detection hot code

Interpreted

Execution

Compiled

Execution

Managed Memory

Test 
Scenarios

1. Test 
Generation

2. Execution 2. Execution

3. Differential Testing

I C

Interpreter-Guided Automatic JIT 
Compiler Unit Testing

Insight 1: Interpreters 
are Executable 

Semantics
=> Concolic Meta-

Interpretation

Insight 2: Interpreters 
and Compiler Share 

Semantics

=> Differential Testing

27 PLDI’22



28

Pharo VM Example
Interpreter VS Compiled Code

PLDI’22



Interpreter VS Compiled Code
Pharo VM Example

PLDI’2229



Concolic Testing through Meta-interpretation

• Idea: Guide test generation by looking at the 
implementation

Different cases 
if x > 100 or <= 100!!

Different cases 
if x = 1023 or != 1023

Godefroid et al. DART: Directed Automated Random Testing. 
PLDI’05 

Set et al. CUTE: a concolic unit testing engine for C. FSE’05
30

int	f(int	x,	int	y){	
if	(x	>	100){	
if	(y	==	1023){	
segfault(!!)	

}	}	}



x y constraints next?

• Concrete + Symbolic 
execution


• Goal: automatically 
discover all execution 
paths

int	f(int	x,	int	y){	
if	(x	>	100){	
if	(y	==	1023){	
segfault(!!)	

}	}	}

Godefroid et al. DART: Directed Automated Random Testing. 
PLDI’ 05 

Set et al. CUTE: a concolic unit testing engine for C. FSE’05

Concolic Testing by Example

31



x y constraints next?

0 0 x <= 100

• Concrete + Symbolic 
execution


• Goal: automatically 
discover all execution 
paths

int	f(int	x,	int	y){	
if	(x	>	100){	
if	(y	==	1023){	
segfault(!!)	

}	}	}

Godefroid et al. DART: Directed Automated Random Testing. 
PLDI’ 05 

Set et al. CUTE: a concolic unit testing engine for C. FSE’05

Concolic Testing by Example

32



x y constraints next?

0 0 x <= 100 x > 100

• Concrete + Symbolic 
execution


• Goal: automatically 
discover all execution 
paths

int	f(int	x,	int	y){	
if	(x	>	100){	
if	(y	==	1023){	
segfault(!!)	

}	}	}

Godefroid et al. DART: Directed Automated Random Testing. 
PLDI’ 05 

Set et al. CUTE: a concolic unit testing engine for C. FSE’05

Concolic Testing by Example

33



x y constraints next?

0 0 x <= 100 x > 100

101 0

• Concrete + Symbolic 
execution


• Goal: automatically 
discover all execution 
paths

int	f(int	x,	int	y){	
if	(x	>	100){	
if	(y	==	1023){	
segfault(!!)	

}	}	}

Godefroid et al. DART: Directed Automated Random Testing. 
PLDI’ 05 

Set et al. CUTE: a concolic unit testing engine for C. FSE’05

Concolic Testing by Example

34



x y constraints next?

0 0 x <= 100 x > 100

101 0 x > 100, y != 
1023

• Concrete + Symbolic 
execution


• Goal: automatically 
discover all execution 
paths

int	f(int	x,	int	y){	
if	(x	>	100){	
if	(y	==	1023){	
segfault(!!)	

}	}	}

Godefroid et al. DART: Directed Automated Random Testing. 
PLDI’ 05 

Set et al. CUTE: a concolic unit testing engine for C. FSE’05

Concolic Testing by Example

35



x y constraints next?

0 0 x <= 100 x > 100

101 0 x > 100, y != 
1023

x > 100, y == 
1023

• Concrete + Symbolic 
execution


• Goal: automatically 
discover all execution 
paths

int	f(int	x,	int	y){	
if	(x	>	100){	
if	(y	==	1023){	
segfault(!!)	

}	}	}

Godefroid et al. DART: Directed Automated Random Testing. 
PLDI’ 05 

Set et al. CUTE: a concolic unit testing engine for C. FSE’05

Concolic Testing by Example

36



x y constraints next?

0 0 x <= 100 x > 100

101 0 x > 100, y != 
1023

x > 100, y == 
1023

101 1023

• Concrete + Symbolic 
execution


• Goal: automatically 
discover all execution 
paths

int	f(int	x,	int	y){	
if	(x	>	100){	
if	(y	==	1023){	
segfault(!!)	

}	}	}

Godefroid et al. DART: Directed Automated Random Testing. 
PLDI’ 05 

Set et al. CUTE: a concolic unit testing engine for C. FSE’05

Concolic Testing by Example

37



x y constraints next?

0 0 x <= 100 x > 100

101 0 x > 100, y != 
1023

x > 100, y == 
1023

101 1023 x > 100, y != 
1023 finished!

• Concrete + Symbolic 
execution


• Goal: automatically 
discover all execution 
paths

int	f(int	x,	int	y){	
if	(x	>	100){	
if	(y	==	1023){	
segfault(!!)	

}	}	}

Godefroid et al. DART: Directed Automated Random Testing. 
PLDI’ 05 

Set et al. CUTE: a concolic unit testing engine for C. FSE’05

Concolic Testing by Example

38



Some Numbers

• 3 bytecode compilers + 1 native method compiler


• 4928 tests generated


• 478 differences

39



Analysis of Differences through Manual Inspection

• 91 causes, 6 different categories


• Errors both in the interpreter AND the compilers


• 14 causes of segmentation faults!

40



• Test generation ~5 minutes


• Total run time of ~10 seconds


• Avg 30ms per instruction

Practical and Cheap

10

100

1000

Native Method Stack−to−Register Simple Linear−Allocator
Compiler

Ti
m

e 
(m

s)
 −

 lo
g 

sc
al

e

41



More in the PLDI article!

• Discovered Bugs


• Concolic Model


• Testing Infrastructure

PLDI’22

42



Is that all?



Ongoing RISCV64 Port

• Currently under development: Real HW testing stage


• Taking advantage of our harness test suite


• Improving tests and scenarios


• Collaboration with Q. Ducasse, P. Cortret, L. Lagadec from ENSTA 
Bretagne


• Future work on: Hardware-based security enforcement

44



Single Instruction Multiple Data Extensions

45



SIMD Design Space 

• VM Primitives


• Specialised 

• Faster, less checks


• Vectorised Bytecode


• Composable 

• Safe at the expense 
of speed

46



Tools for Debugging
• Machine Code Debugger


• Compiler IR Visualisations


• Disassembler DSL


• …

47



Pharo VM Manual Variable Localisation

interpret	
	self	fetchNextBytecode.	
		[	true	]	whileTrue:	[	
				self	

			dispatchOn:	currentBytecode	
			in:	BytecodeTable	].	

		^	nilpushReceiverBytecode	
		self	fetchNextBytecode.	
		self	internalPush:	self	receiver
pushBool:	trueOrFalse	

<inline:	true>	
		self	push:	(objectMemory	booleanObjectOf:	trueOrFalse)
internalAboutToReturn:	resultOop	through:	aContext	

<inline:	true>	
[…]	

		self	internalPush:	resultOop	
		[…]

internalPush:	aValue	
		localSP	:=	localSP	-	bytesPerWord.	
		self	longAt:	localSP	put:	aValue

push:	aValue	
		stackPointer	:=	stackPointer	-	bytesPerWord.	
		self	longAt:	stackPointer	put:	aValue

Developer should know 
C generation semantics

48



Automatic Variable localisation!
Intel x86-64

0.0

0.5

1.0

1.5

 ArrayAccess  BinaryTrees  Chameleons  ChameneosRedux ClassVarBinding  Compiler
Benchmark

R
el

at
ive

 p
er

fo
rm

an
ce

group
1−fp

2−spfp

3−ip

4−ipfp

5−ipsp

6−sp

7−ipfpsp

Averages of 100 iterations + stdev. Relative to baseline (no optimisation). Higher is better.

49



Analysing Code Cache Behavior

Analysing Events 
We see trashing 

in the code 

Red: Compaction Events

We need to 
increase the size 

of the code 

Occupation 
Rate

50



Code Cache Unexpected results

Execution time for different Young Space size (1MB, 10MB, 100MB) and Cache Sizes (1.44MB, 2.8MB, 5MB, 10MB) 


Young Space

Code Cache Size

Time

Loading Moose51



We are hiring!

• We have


• Engineer Positions


• Phd Positions


• Keywords: Compilers, Interpreters, Memory Management, Security


• Come talk to us!

52



Pharo VM - News from the Front

@pharoproject

pharo.org 

consortium-adm@pharo.org

discord.gg/QewZMZa


thepharo.dev

Permanent Space
New Image Format

Faster Startup / Saving

Ephemerons

Speculative 
Compilation

cold hot hot 

Interpre Compil

Managed 

I C

����

guillermo.polito@univ-lille.fr

Stay in Sync! 

53

mailto:guillermo.polito@univ-lille.fr


Conclusion

• 478 differences found, 91 causes, 6 
categories 


• Practical:


• 4928 tests generated in ~8 
minutes


• 4928 tests run in ~40 seconds

cold hot hot 

Inter Compiled

Execution

Manage

Test 
Scenarios

1. Test 
Generation

2. Execution 2. Execution

3. Differential Testing

I C

Guille Polito - Pablo Tesone - Stéphane Ducasse

guillermo.polito@univ-lille.fr 
@guillep

����

54

mailto:guillermo.polito@univ-lille.fr


Improvements: Clean Up

• V3 Support


• Old Memory Format


• Old Block Closures


• Dead Code


• ~ 65KLOC

55



Improvements: Sockets

• Unified Implementation in all Platforms


• Better Async Support


• Unix Sockets (Under Work)


• IPv6 Addresses (Under Work)

56



Improvements: Serial Port FFI

• Pure FFI implementation


• Working in all Platforms (Unix / Windows / OSX)


• Migrating Plugins to FFI

57



Improvements: RISCV64
Ongoing Port

• Currently under development: Real HW testing stage


• Taking advantage of our harness test suite.


• Improving tests and scenarios


• Collaboration with Q. Ducasse, P. Cortret, L. Lagadec from ENSTA Bretagne


• Future work on: Hardware-based security enforcement

58



Improvements: Open Build Service
Better Support for Linux Distributions

Building using 
existing system 

Supporting 
system 

Multiple 
Architectures

Initial targets: 

• Arch / Manjaro 
• Debian 
• Fedora 
• Raspbian 
• Ubuntu 
• openSuse

59



Improvements: Visual Studio Support
Building & Debugging

MSVC - No 
cygwin

60



Improvements: Windows ARM 

MSVC - No 
cygwin

61



Improvements: Raspbian 32/64 bits

62



Back to the Future
Objectives for 2022

63



Permanent Space
Problem

• Many permanent objects


• They have references from/to other objects


• We are traversing them to GC


• E.g., Classes, Methods, Literals, Resources

Generates 
Long Pauses 

64



Permanent Space
Our Solution

• New Object Space for permanent Objects


• Minimise or Eliminate GC passes


• Persisting them through executions

65



Permanent Space
Our Solution

• New Object Space for permanent Objects


• Minimise or Eliminate GC passes


• Persisting them through executionsWe need to 
put them in a 

66



New Image Format
Problem
• Current Image format only support a single 

object space


• No extensible: not new metadata nor new data


• Cannot be Memory Mapped (it is modified before 
save/load)


• Requires to discard all state of the running VM 
(slow saves)

67



New Image Format
Problem
• Current Image format only support a single 

object space


• No extensible: not new metadata nor new data


• Cannot be Memory Mapped (it is modified before 
save/load)


• Requires to discard all state of the running VM 
(slow saves) Slow and 

Restricting 
68



New Image Format
Our Solution
• New Image format based in directories / 

bundles


• Many Elements of data and metadata


• Metadata en User & Machine readable format 
(STON?)


• Extensible format

69



Fast Snapshots / Loading
Based on PermSpace & Image Format

• Memory Mapped Image


• Shareable State


• Saving / Loading Warm State of the VM

70



• ARM64, RISCV64, Slang…


• Lots of Tests!


• Integration: Sockets, serial


• Visual Studio, Open Build Service

@pharoproject

pharo.org 

consortium-adm@pharo.org

discord.gg/QewZMZa


thepharo.dev

Permanent Space
New Image Format

Faster Startup / Saving

Next Objectives
Ephemerons

Speculative 
Compilation

71



Guille Polito, Stéphane Ducasse, Pablo Tesone, 
Théo Rogliano, Pierre Misse-Chanabier,  Carolina Hernandez, Luc Fabresse 

RMoD Team — Inria Lille Nord Europe — UMR9189 CRIStAL — CNRS

Cross-ISA Testing of the 
Pharo VM
Lessons learned while porting to ARMv8 64bits 
Tool Paper — MPLR’21

����

72



Context
The Pharo VM

73



Some Numbers

• 255 stack based bytecodes (77 different) + ~340 primitives/
native methods


• 146 different IR instructions


• polymorphic inline caches


• threaded code interpreter 


• generational scavenger GC

Lots of combinations!

74



Objective: Implementing an ARM64 Backend

• ARM64 is now pervasive:


• New Apple M1


• Raspberry Pi 4


• Microsoft Surface Pro X


• PineBook Pro


• …

move	r1	#1
move	r2	#17
checkSmallInt	
r1checkSmallInt	
r2add	r3	r1	r2
checkSmallInt	
r3move	r1	r3
ret

32bit x86

64bit x86_64

32bit ARMv5-7

64bit ARMv8

JIT compiler IR

75



Case Study 1 

Porting the Cogit JIT Compiler to ARM64 

• Started with no tests and no hardware (main target Apple M1)


• Incremental test development: bytecode, native methods, PICs, code 
patching


• All tests run from the beginning on our four targets: 
    x86, x86-64, ARM32 and ARM64


• Test allowed safe modifications in the IR to support  
e.g., ARM64 Multiplication overflow


• ARM64 specific tests covered stack alignment, W+X …
76



Case Study 2 

Ongoing Port to RISCV64

• Currently under development


• Is our harness test suite enough to develop a new backend?


• Are our tests general enough?


• Collaboration with Q. Ducasse, P. Cortret, L. Lagadec from ENSTA Bretagne


• Future work on: Hardware-based security enforcement

77



Case Study 3 

Debugging and Testing Memory Corruptions 

• Bug report using Ephemerons 
  https://github.com/pharo-project/pharo/issues/8153


• Starting the other way around


• First reproducing the bug in real-hardware 
  => long to execute (even longer in simulation) 
  => required manual developer intervention


• Then building a unit test from observations


• Test becomes a part of the regression test suite
78



Future Perspectives 

Automatic VM Validation


• Automatic (Unit?) Test Case Generation


• Interpreter vs Compiler Differential Testing


• VM Tailored Multi-level Debugging

79



Real Hardware 
Execution

Full-System 
Simulation Unit-Testing

Feedback-cycle 
speed

Very low Low High

Availability Low High High

Reproducibility Low Low High

Precision High Low Low

Debuggability Low High High

Lessons learned while porting to ARMv8 64bits

Cross-ISA Testing of the 
Pharo VM

����
80



Debugging a compiler
Insights: build your own tools, based on needs, not desires

Examples:

• Machine 

code 
debugger


• Bytecode-IR 
visualization


• Disassembler 
DSL

81



Interpreter-Guided 
JIT Compiler Test Generation
Validating the Pharo JIT compiler through

concolic execution and differential testing
Guille Polito - Pablo Tesone - Stéphane Ducasse

guillermo.polito@univ-lille.fr 
@guillep

����

PLDI’22 — San Diego

82

mailto:guillermo.polito@univ-lille.fr


Virtual Machine Execution Engine

cold code
hot spot

detection hot code

Interpreted

Execution

Compiled

Execution

Managed Memory

I C

83



Virtual Machine Execution Engine

cold code
hot spot

detection hot code

Interpreted

Execution

Compiled

Execution

Managed Memory

I C

84



Virtual Machine Execution Engine

cold code
hot spot

detection hot code

Interpreted

Execution

Compiled

Execution

Managed Memory

I C

85



Virtual Machine Execution Engine

cold code
hot spot

detection hot code

Interpreted

Execution

Compiled

Execution

Managed Memory

I C

86



Virtual Machine Execution Engine

cold code
hot spot

detection hot code

Interpreted

Execution

Compiled

Execution

Managed Memory

I C

87



How can we automatically test VMs?

cold code
hot spot

detection hot code

Interpreted

Execution

Compiled

Execution

Managed Memory

I C

88



Challenges of VM Test Generation
cold code

hot spot

detection hot code

Interpreted

Execution

Compiled

Execution

Managed Memory

I C

?
• Do they cover different code regions/branches/

paths?


•  
 
How do we determine what is the expected output  
of a generated test?

Challenge 
1: Test 

Challenge 
2: Test 

89



Black Box Testing + Fuzzing

cold code
hot spot

detection hot code

Interpreted

Execution

Compiled

Execution

Managed Memory

I C

90



Black Box Testing + Fuzzing

cold code
hot spot

detection hot code

Interpreted

Execution

Compiled

Execution

Managed Memory

I C Slow 
 Coarse Grained 
 Non Determinism 
 Require Multiple Reference 
Implementations 91



cold code
hot spot

detection hot code

Interpreted

Execution

Compiled

Execution

Managed Memory

Test 
Scenarios

1. Test 
Generation

2. Execution 2. Execution

3. Differential Testing

I C

Interpreter-Guided Automatic JIT Compiler 
Unit Testing

92



Implementation View
Interpreter
Instruction

Path
input contraints

output constraints
Path

input contraints
output constraints

Path
input contraints

output constraints
Path

input contraints
output constraints

Concrete Input 
VM Frame

Compiled 
Instruction

Concrete 
Output VM 

Frame
Differential 

Results

1. concolic
exploration

2. compilation

3. concrete JIT
test execution

4. validate

93



Implementation View
Interpreter
Instruction

Path
input contraints

output constraints
Path

input contraints
output constraints

Path
input contraints

output constraints
Path

input contraints
output constraints

Concrete Input 
VM Frame

Compiled 
Instruction

Concrete 
Output VM 

Frame
Differential 

Results

1. concolic
exploration

2. compilation

3. concrete JIT
test execution

4. validate

94



Implementation View
Interpreter
Instruction

Path
input contraints

output constraints
Path

input contraints
output constraints

Path
input contraints

output constraints
Path

input contraints
output constraints

Concrete Input 
VM Frame

Compiled 
Instruction

Concrete 
Output VM 

Frame
Differential 

Results

1. concolic
exploration

2. compilation

3. concrete JIT
test execution

4. validate

95



Implementation View
Interpreter
Instruction

Path
input contraints

output constraints
Path

input contraints
output constraints

Path
input contraints

output constraints
Path

input contraints
output constraints

Concrete Input 
VM Frame

Compiled 
Instruction

Concrete 
Output VM 

Frame
Differential 

Results

1. concolic
exploration

2. compilation

3. concrete JIT
test execution

4. validate

96



Implementation View
Interpreter
Instruction

Path
input contraints

output constraints
Path

input contraints
output constraints

Path
input contraints

output constraints
Path

input contraints
output constraints

Concrete Input 
VM Frame

Compiled 
Instruction

Concrete 
Output VM 

Frame
Differential 

Results

1. concolic
exploration

2. compilation

3. concrete JIT
test execution

4. validate

97



Concolic Meta-Interpretation Model

• Models VM behaviour during 
concolic execution


• Frame


• Objects + types


• Classes


• Then flattened into SAT solver 
equations

id
class_object
type
value (if small integer)
slots

AbstractObject
receiver
method
argument_size
arguments
operand_stack_size
operand_stack

AbstractVMFrame

format
class_id

AbstractClass

* class_object

98



Experimental Context: The Pharo VM
• Interpreted-compiled mixed execution


• Some numbers:


• 255 stack based bytecodes


• ~340 primitives/native methods


• 146 different IR instructions


• x86, x86-64, ARMv7, ARMv8, RISC-V


• Industrial consortium: 


• 28 International companies, 26 academic partners

99



Previous Manual Testing Effort

• No useful unit tests by ~06/2020


• Large manual testing effort during 2020 while porting to ARM64bits


• Extended VM simulation with a (TDD compatible) unit testing 
infrastructure


• 450+ written tests on the interpreter and the garbage collector*


• 580+ written tests on the JIT compiler*


• Parametrisable for 32 and 64bits, ARM32, ARM64, x86, x86-64
Cross-ISA Testing of the Pharo VM. Lessons learned while porting to ARMv8 64bits. Polito et al. MPLR’21

* Numbers by 05/2021

100



Evaluation

• 3 bytecode compilers + 1 native method compiler


• 4928 tests generated


• 478 differences

101



Analysis of Differences through Manual Inspection

• 91 causes, 6 different categories


• Errors both in the interpreter AND the compilers


• 14 causes of segmentation faults!

102



Characterising Concolic Execution
Paths per instruction

1

10

100

Bytecode Native Method
Paths per Instruction

Ti
m

e 
(m

s)
 −

 lo
g 

sc
al

e

Paths per 
Type of 

Instruction

• Native methods present in 
average more paths than 
bytecode instructions 
 
=> longer time to explore 
 
=> potentially more bugs

Pa
th

s

103



• Test generation ~5 minutes


• Total run time of ~10 seconds


• Avg 30ms per instruction

Practical and Cheap

10

100

1000

Native Method Stack−to−Register Simple Linear−Allocator
Compiler

Ti
m

e 
(m

s)
 −

 lo
g 

sc
al

e

104



More in the article!

• Discovered Bugs


• Concolic Model


• Testing Infrastructure

105



Conclusion

• 478 differences found, 91 causes, 6 
categories 


• Practical:


• 4928 tests generated in ~8 
minutes


• 4928 tests run in ~40 seconds

cold hot hot 

Inter Compiled

Execution

Manage

Test 
Scenarios

1. Test 
Generation

2. Execution 2. Execution

3. Differential Testing

I C

Guille Polito - Pablo Tesone - Stéphane Ducasse

guillermo.polito@univ-lille.fr 
@guillep

����

106

mailto:guillermo.polito@univ-lille.fr


Extras

107



Simulation + Testing Environment

Production VM (C)

Simulation Environment (Pharo)

Heap

Native Code Cache

Unicorn LLVM 
Disassembler

VM

Interpreter GC JIT Compiler

Transpiled to
Testing 

infrastructure

108



Unit Testing Infrastructure Comparison

Real Hardware 
Execution

Full-System 
Simulation

Unit-Testing

Feedback-
cycle speed

Very low Low High

Availability Low High High

Reproducibilit
y

Low Low High

Precision High Low Low

Debuggability Low High High

109



s1 = max small int
s2 = small int 1

s1 = max small int
s2 = small int 1

receiver = ?
method = ?

operand_stack_size > 1
AND

s1 is small int
AND

s2 is small int
AND

s3 > max small int

operand_stack_size > 1
AND

s1 is small int
AND

s2 not small int

receiver = ?
method = ?
operand stack operand stack

operand stack operand stack

Abstract
Input

Frame

Abstract
Output
Frame

+
Recorded

Path
Constraints

Negated
Path

Constraints

receiver = ?
method = ?

receiver = ?
method = ?

operand_stack_size <= 1

operand_stack_size > 1

operand stack

operand stack

(empty)

(empty) s1 = small int
s2 = small int

s3 = s1 + s2

receiver = ?
method = ?

receiver = ?
method = ?

operand_stack_size > 1
AND

s1 is small int
AND

s2 is small int
AND

(s3 < max small int
AND

s3 > min small int)

operand_stack_size > 1
AND

s1 is small int
AND

s2 is small int
AND

! (s3 < max small int
AND

s3 > min small int)

operand stack

operand stack

s1 = small int
s2 = obj

s1 = small int
s2 = obj

receiver = ?
method = ?

receiver = ?
method = ?

operand_stack_size > 1
AND

s1 is small int
AND

s2 not small int

operand_stack_size > 1
AND

s1 not small int

s1 = obj
s2 = small int

s1 = obj
s2 = small int

receiver = ?
method = ?

receiver = ?
method = ?

operand_stack_size > 1
AND

s1 not small int

(empty)

operand stack

operand stack

<<
co

ns
tra

in
t s

ol
vi

ng
 +

 a
bs

tra
ct

 fr
am

e 
co

ns
tru

ct
io

n>
>

<<
co

ns
tra

in
t s

ol
vi

ng
 +

 a
bs

tra
ct

 fr
am

e 
co

ns
tru

ct
io

n>
>

<<
co

ns
tra

in
t s

ol
vi

ng
 +

 a
bs

tra
ct

 fr
am

e 
co

ns
tru

ct
io

n>
>

<<
co

ns
tra

in
t s

ol
vi

ng
 +

 a
bs

tra
ct

 fr
am

e 
co

ns
tru

ct
io

n>
>

concolic execution

Path negation

Concolic Execution #1 Concolic Execution #2 Concolic Execution #3 Concolic Execution #4 Concolic Execution #5

Exit: invalid frame Exit: success Exit: failure Exit: failure Exit: failure

110


