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ARM64 Backend

• ARM64 is now pervasive:


• New Apple M1


• Raspberry Pi 4


• Microsoft Surface Pro X


• PineBook Pro


• …

move	r1	#1
move	r2	#17
checkSmallInt	
r1checkSmallInt	
r2add	r3	r1	r2
checkSmallInt	
r3move	r1	r3
ret

32bit x86

64bit x86_64

32bit ARMv5-7

64bit ARMv8

JIT compiler IR
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Working Directly on Real Hardware

• How to do a partial implementation, in an iterative way?


• Hardware availability: did not have access to an Apple M1 
yet


• Slow Change-Compile-Test cycle 

• Bug reproduction is a demanding task
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Simulation Environment

Production VM (C)

Simulation Environment (Pharo)

Heap

Native Code Cache

Unicorn LLVM 
Disassembler

VM

Interpreter GC JIT Compiler

Transpiled to
Testing 

infrastructure

Miranda	et	al.	

Two	decades	of	smalltalk	vm	development:	live	vm	
development	through	simula:on	tools.		

VMIL’18	
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Extending Simulation with Unit Tests

Production VM (C)

Simulation Environment (Pharo)

Heap

Native Code Cache

Unicorn LLVM 
Disassembler

VM

Interpreter GC JIT Compiler

Transpiled to
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Our testing infrastructure by example

testPushConstantZeroBytecodePushesASmallIntegerZero	
	 	

self	compile:	[	compiler	genPushConstantZeroBytecode	].	 	
self	runGeneratedCode.	

	 	
self	assert:	self	popAddress	equals:	(memory	integerObjectOf:	0)



  Reusable test fixtures covering 
e.g., 
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testPushConstantZeroBytecodePushesASmallIntegerZero	
	 	

self	compile:	[	compiler	genPushConstantZeroBytecode	].	 	
self	runGeneratedCode.	

	 	
self	assert:	self	popAddress	equals:	(memory	integerObjectOf:	0)

  Compiler internal 
DSL

  JIT Execution helpers such as e.g., 
   - run all code between two addresses 
   - run until the PC hits an address
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Our testing infrastructure by example
  Reusable test fixtures covering e.g., 
  - trampoline and stub compilation   
  - heap initialization



testPushConstantZeroBytecodePushesASmallIntegerZero	
	 	

self	compile:	[	compiler	genPushConstantZeroBytecode	].	 	
self	runGeneratedCode.	

	 	
self	assert:	self	popAddress	equals:	(memory	integerObjectOf:	0)

Blackbox testing

Depend only on 
observable 
behaviour

Reusable on 
different 

backends /

Resistant to 
changes in the 
implementation
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testPushConstantZeroBytecodePushesASmallIntegerZero	
	 	

self	compile:	[	compiler	genPushConstantZeroBytecode	].	 	
self	runGeneratedCode.	

	 	
self	assert:	self	popAddress	equals:	(memory	integerObjectOf:	0)

Cross-Compilation, Cross-Execution

Hardware 
independent

Parametrizable 
tests

http://www.unicorn-engine.org
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There is no silver bullet

• Simulators are cheap, but not 100% trustworthy


• Full execution (simulated or on real HW)


• more expensive to run


• cannot unit-test it (less controllable)


• Unit tests only exercise specific scenarios


• Full executions exercise not yet covered scenarios
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• Simulate the execution, less than you run tests


• Run the real app, less than you simulate


• Go back and forth:


• Turn full execution failures into tests


• Fix with the aid of the test: 
=> unit test are faster to run 
=> easier to debug 
=> detect regressions

Our testing Workflow
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Testing & TDDing the VM

• No useful unit tests by ~06/2020


• Large manual testing effort during 2020 while porting to ARM64bits


• Extended VM simulation with a (TDD compatible) unit testing 
infrastructure


• 450+ written tests on the interpreter and the garbage collector*


• 580+ written tests on the JIT compiler*


• Parametrisable for 32 and 64bits, ARM32, ARM64, x86, x86-64

MPLR’21
* Numbers by 05/2021
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Testing & TDDing the VM

• No useful unit tests by ~06/2020


• Large manual testing effort during 2020 while porting to ARM64bits


• Extended VM simulation with a (TDD compatible) unit testing 
infrastructure


• 450+ written tests on the interpreter and the garbage collector*


• 580+ written tests on the JIT compiler*


• Parametrisable for 32 and 64bits, ARM32, ARM64, x86, x86-64

MPLR’21
* Numbers by 05/2021

1040+ tests, are they enough?
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How can we automatically test VMs?

cold code
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detection hot code
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Challenges of VM Test Generation

cold code
hot spot

detection hot code
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Execution
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I C

?

• Do they cover different code regions/branches/
paths?


• How do we determine what is the expected output  
of a generated test?

Challenge 
1: Test 

Challenge 
2: Test 

PLDI’2219
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Interpreter-Guided Automatic JIT Compiler 
Unit Testing
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Insight 1: Interpreters 
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=> Concolic Meta-
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Interpreter-Guided Automatic JIT Compiler 
Unit Testing
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Pharo VM Example
Interpreter are Executable Semantics



Interpreter are Executable Semantics
Pharo VM Example

If both operands are 
integers

If their sum does not 
overflow

Else, slow path => 
message send
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Insight 1: Interpreters 
are Executable 

Semantics
=> Concolic Meta-

Interpretation

Insight 2: Interpreters 
and Compiler Share 

Semantics

=> Differential Testing
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Pharo VM Example
Interpreter VS Compiled Code

PLDI’22



Interpreter VS Compiled Code
Pharo VM Example

PLDI’2229



Concolic Testing through Meta-interpretation

• Idea: Guide test generation by looking at the 
implementation

Different cases 
if x > 100 or <= 100!!

Different cases 
if x = 1023 or != 1023

Godefroid et al. DART: Directed Automated Random Testing. 
PLDI’05 

Set et al. CUTE: a concolic unit testing engine for C. FSE’05
30

int	f(int	x,	int	y){	
if	(x	>	100){	
if	(y	==	1023){	
segfault(!!)	

}	}	}



x y constraints next?

• Concrete + Symbolic 
execution


• Goal: automatically 
discover all execution 
paths

int	f(int	x,	int	y){	
if	(x	>	100){	
if	(y	==	1023){	
segfault(!!)	

}	}	}

Godefroid et al. DART: Directed Automated Random Testing. 
PLDI’ 05 

Set et al. CUTE: a concolic unit testing engine for C. FSE’05

Concolic Testing by Example
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x y constraints next?

0 0 x <= 100

• Concrete + Symbolic 
execution


• Goal: automatically 
discover all execution 
paths

int	f(int	x,	int	y){	
if	(x	>	100){	
if	(y	==	1023){	
segfault(!!)	

}	}	}

Godefroid et al. DART: Directed Automated Random Testing. 
PLDI’ 05 

Set et al. CUTE: a concolic unit testing engine for C. FSE’05

Concolic Testing by Example
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x y constraints next?

0 0 x <= 100 x > 100

• Concrete + Symbolic 
execution


• Goal: automatically 
discover all execution 
paths
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segfault(!!)	

}	}	}
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x y constraints next?
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x y constraints next?

0 0 x <= 100 x > 100

101 0 x > 100, y != 
1023
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x y constraints next?

0 0 x <= 100 x > 100

101 0 x > 100, y != 
1023

x > 100, y == 
1023

101 1023 x > 100, y != 
1023 finished!

• Concrete + Symbolic 
execution


• Goal: automatically 
discover all execution 
paths

int	f(int	x,	int	y){	
if	(x	>	100){	
if	(y	==	1023){	
segfault(!!)	

}	}	}

Godefroid et al. DART: Directed Automated Random Testing. 
PLDI’ 05 

Set et al. CUTE: a concolic unit testing engine for C. FSE’05

Concolic Testing by Example
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Some Numbers

• 3 bytecode compilers + 1 native method compiler


• 4928 tests generated


• 478 differences
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Analysis of Differences through Manual Inspection

• 91 causes, 6 different categories


• Errors both in the interpreter AND the compilers


• 14 causes of segmentation faults!
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• Test generation ~5 minutes


• Total run time of ~10 seconds


• Avg 30ms per instruction

Practical and Cheap
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Native Method Stack−to−Register Simple Linear−Allocator
Compiler
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More in the PLDI article!

• Discovered Bugs


• Concolic Model


• Testing Infrastructure

PLDI’22
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Is that all?



Ongoing RISCV64 Port

• Currently under development: Real HW testing stage


• Taking advantage of our harness test suite


• Improving tests and scenarios


• Collaboration with Q. Ducasse, P. Cortret, L. Lagadec from ENSTA 
Bretagne


• Future work on: Hardware-based security enforcement
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Single Instruction Multiple Data Extensions
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SIMD Design Space 

• VM Primitives


• Specialised 

• Faster, less checks


• Vectorised Bytecode


• Composable 

• Safe at the expense 
of speed
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Tools for Debugging
• Machine Code Debugger


• Compiler IR Visualisations


• Disassembler DSL


• …
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Pharo VM Manual Variable Localisation

interpret	
	self	fetchNextBytecode.	
		[	true	]	whileTrue:	[	
				self	

			dispatchOn:	currentBytecode	
			in:	BytecodeTable	].	

		^	nilpushReceiverBytecode	
		self	fetchNextBytecode.	
		self	internalPush:	self	receiver
pushBool:	trueOrFalse	

<inline:	true>	
		self	push:	(objectMemory	booleanObjectOf:	trueOrFalse)
internalAboutToReturn:	resultOop	through:	aContext	

<inline:	true>	
[…]	

		self	internalPush:	resultOop	
		[…]

internalPush:	aValue	
		localSP	:=	localSP	-	bytesPerWord.	
		self	longAt:	localSP	put:	aValue

push:	aValue	
		stackPointer	:=	stackPointer	-	bytesPerWord.	
		self	longAt:	stackPointer	put:	aValue

Developer should know 
C generation semantics
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Automatic Variable localisation!
Intel x86-64

0.0

0.5

1.0

1.5

 ArrayAccess  BinaryTrees  Chameleons  ChameneosRedux ClassVarBinding  Compiler
Benchmark

R
el
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ive
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group
1−fp

2−spfp

3−ip

4−ipfp

5−ipsp

6−sp

7−ipfpsp

Averages of 100 iterations + stdev. Relative to baseline (no optimisation). Higher is better.
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Analysing Code Cache Behavior

Analysing Events 
We see trashing 

in the code 

Red: Compaction Events

We need to 
increase the size 

of the code 

Occupation 
Rate

50



Code Cache Unexpected results

Execution time for different Young Space size (1MB, 10MB, 100MB) and Cache Sizes (1.44MB, 2.8MB, 5MB, 10MB) 


Young Space

Code Cache Size

Time

Loading Moose51



We are hiring!

• We have


• Engineer Positions


• Phd Positions


• Keywords: Compilers, Interpreters, Memory Management, Security


• Come talk to us!
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Pharo VM - News from the Front

@pharoproject

pharo.org 

consortium-adm@pharo.org

discord.gg/QewZMZa


thepharo.dev

Permanent Space
New Image Format

Faster Startup / Saving

Ephemerons

Speculative 
Compilation

cold hot hot 

Interpre Compil

Managed 

I C

����

guillermo.polito@univ-lille.fr

Stay in Sync! 
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Conclusion

• 478 differences found, 91 causes, 6 
categories 


• Practical:


• 4928 tests generated in ~8 
minutes


• 4928 tests run in ~40 seconds

cold hot hot 

Inter Compiled

Execution

Manage

Test 
Scenarios

1. Test 
Generation

2. Execution 2. Execution

3. Differential Testing

I C

Guille Polito - Pablo Tesone - Stéphane Ducasse

guillermo.polito@univ-lille.fr 
@guillep

����
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Improvements: Clean Up

• V3 Support


• Old Memory Format


• Old Block Closures


• Dead Code


• ~ 65KLOC
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Improvements: Sockets

• Unified Implementation in all Platforms


• Better Async Support


• Unix Sockets (Under Work)


• IPv6 Addresses (Under Work)
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Improvements: Serial Port FFI

• Pure FFI implementation


• Working in all Platforms (Unix / Windows / OSX)


• Migrating Plugins to FFI
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Improvements: RISCV64
Ongoing Port

• Currently under development: Real HW testing stage


• Taking advantage of our harness test suite.


• Improving tests and scenarios


• Collaboration with Q. Ducasse, P. Cortret, L. Lagadec from ENSTA Bretagne


• Future work on: Hardware-based security enforcement
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Improvements: Open Build Service
Better Support for Linux Distributions

Building using 
existing system 

Supporting 
system 

Multiple 
Architectures

Initial targets: 

• Arch / Manjaro 
• Debian 
• Fedora 
• Raspbian 
• Ubuntu 
• openSuse
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Improvements: Visual Studio Support
Building & Debugging

MSVC - No 
cygwin
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Improvements: Windows ARM 

MSVC - No 
cygwin
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Improvements: Raspbian 32/64 bits
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Back to the Future
Objectives for 2022
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Permanent Space
Problem

• Many permanent objects


• They have references from/to other objects


• We are traversing them to GC


• E.g., Classes, Methods, Literals, Resources

Generates 
Long Pauses 
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Permanent Space
Our Solution

• New Object Space for permanent Objects


• Minimise or Eliminate GC passes


• Persisting them through executions
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Permanent Space
Our Solution

• New Object Space for permanent Objects


• Minimise or Eliminate GC passes


• Persisting them through executionsWe need to 
put them in a 
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New Image Format
Problem
• Current Image format only support a single 

object space


• No extensible: not new metadata nor new data


• Cannot be Memory Mapped (it is modified before 
save/load)


• Requires to discard all state of the running VM 
(slow saves)
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New Image Format
Problem
• Current Image format only support a single 

object space


• No extensible: not new metadata nor new data


• Cannot be Memory Mapped (it is modified before 
save/load)


• Requires to discard all state of the running VM 
(slow saves) Slow and 

Restricting 
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New Image Format
Our Solution
• New Image format based in directories / 

bundles


• Many Elements of data and metadata


• Metadata en User & Machine readable format 
(STON?)


• Extensible format
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Fast Snapshots / Loading
Based on PermSpace & Image Format

• Memory Mapped Image


• Shareable State


• Saving / Loading Warm State of the VM
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• ARM64, RISCV64, Slang…


• Lots of Tests!


• Integration: Sockets, serial


• Visual Studio, Open Build Service

@pharoproject

pharo.org 

consortium-adm@pharo.org

discord.gg/QewZMZa


thepharo.dev

Permanent Space
New Image Format

Faster Startup / Saving

Next Objectives
Ephemerons

Speculative 
Compilation
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Guille Polito, Stéphane Ducasse, Pablo Tesone, 
Théo Rogliano, Pierre Misse-Chanabier,  Carolina Hernandez, Luc Fabresse 

RMoD Team — Inria Lille Nord Europe — UMR9189 CRIStAL — CNRS

Cross-ISA Testing of the 
Pharo VM
Lessons learned while porting to ARMv8 64bits 
Tool Paper — MPLR’21

����
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Context
The Pharo VM
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Some Numbers

• 255 stack based bytecodes (77 different) + ~340 primitives/
native methods


• 146 different IR instructions


• polymorphic inline caches


• threaded code interpreter 


• generational scavenger GC

Lots of combinations!
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Objective: Implementing an ARM64 Backend

• ARM64 is now pervasive:


• New Apple M1


• Raspberry Pi 4


• Microsoft Surface Pro X


• PineBook Pro


• …

move	r1	#1
move	r2	#17
checkSmallInt	
r1checkSmallInt	
r2add	r3	r1	r2
checkSmallInt	
r3move	r1	r3
ret

32bit x86

64bit x86_64

32bit ARMv5-7

64bit ARMv8

JIT compiler IR
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Case Study 1 

Porting the Cogit JIT Compiler to ARM64 

• Started with no tests and no hardware (main target Apple M1)


• Incremental test development: bytecode, native methods, PICs, code 
patching


• All tests run from the beginning on our four targets: 
    x86, x86-64, ARM32 and ARM64


• Test allowed safe modifications in the IR to support  
e.g., ARM64 Multiplication overflow


• ARM64 specific tests covered stack alignment, W+X …
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Case Study 2 

Ongoing Port to RISCV64

• Currently under development


• Is our harness test suite enough to develop a new backend?


• Are our tests general enough?


• Collaboration with Q. Ducasse, P. Cortret, L. Lagadec from ENSTA Bretagne


• Future work on: Hardware-based security enforcement
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Case Study 3 

Debugging and Testing Memory Corruptions 

• Bug report using Ephemerons 
  https://github.com/pharo-project/pharo/issues/8153


• Starting the other way around


• First reproducing the bug in real-hardware 
  => long to execute (even longer in simulation) 
  => required manual developer intervention


• Then building a unit test from observations


• Test becomes a part of the regression test suite
78



Future Perspectives 

Automatic VM Validation


• Automatic (Unit?) Test Case Generation


• Interpreter vs Compiler Differential Testing


• VM Tailored Multi-level Debugging
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Real Hardware 
Execution

Full-System 
Simulation Unit-Testing

Feedback-cycle 
speed

Very low Low High

Availability Low High High

Reproducibility Low Low High

Precision High Low Low

Debuggability Low High High

Lessons learned while porting to ARMv8 64bits

Cross-ISA Testing of the 
Pharo VM

����
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Debugging a compiler
Insights: build your own tools, based on needs, not desires

Examples:

• Machine 

code 
debugger


• Bytecode-IR 
visualization


• Disassembler 
DSL

81



Interpreter-Guided 
JIT Compiler Test Generation
Validating the Pharo JIT compiler through

concolic execution and differential testing
Guille Polito - Pablo Tesone - Stéphane Ducasse

guillermo.polito@univ-lille.fr 
@guillep

����

PLDI’22 — San Diego
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Virtual Machine Execution Engine
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How can we automatically test VMs?
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Challenges of VM Test Generation
cold code

hot spot

detection hot code

Interpreted

Execution

Compiled

Execution

Managed Memory

I C

?
• Do they cover different code regions/branches/

paths?


•  
 
How do we determine what is the expected output  
of a generated test?

Challenge 
1: Test 

Challenge 
2: Test 

89



Black Box Testing + Fuzzing
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Black Box Testing + Fuzzing

cold code
hot spot

detection hot code

Interpreted

Execution

Compiled

Execution

Managed Memory

I C Slow 
 Coarse Grained 
 Non Determinism 
 Require Multiple Reference 
Implementations 91
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Test 
Scenarios

1. Test 
Generation

2. Execution 2. Execution

3. Differential Testing

I C

Interpreter-Guided Automatic JIT Compiler 
Unit Testing
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Implementation View
Interpreter
Instruction

Path
input contraints

output constraints
Path

input contraints
output constraints

Path
input contraints

output constraints
Path

input contraints
output constraints

Concrete Input 
VM Frame

Compiled 
Instruction

Concrete 
Output VM 

Frame
Differential 

Results

1. concolic
exploration

2. compilation

3. concrete JIT
test execution

4. validate
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Concolic Meta-Interpretation Model

• Models VM behaviour during 
concolic execution


• Frame


• Objects + types


• Classes


• Then flattened into SAT solver 
equations

id
class_object
type
value (if small integer)
slots

AbstractObject
receiver
method
argument_size
arguments
operand_stack_size
operand_stack

AbstractVMFrame

format
class_id

AbstractClass

* class_object
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Experimental Context: The Pharo VM
• Interpreted-compiled mixed execution


• Some numbers:


• 255 stack based bytecodes


• ~340 primitives/native methods


• 146 different IR instructions


• x86, x86-64, ARMv7, ARMv8, RISC-V


• Industrial consortium: 


• 28 International companies, 26 academic partners
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Previous Manual Testing Effort

• No useful unit tests by ~06/2020


• Large manual testing effort during 2020 while porting to ARM64bits


• Extended VM simulation with a (TDD compatible) unit testing 
infrastructure


• 450+ written tests on the interpreter and the garbage collector*


• 580+ written tests on the JIT compiler*


• Parametrisable for 32 and 64bits, ARM32, ARM64, x86, x86-64
Cross-ISA Testing of the Pharo VM. Lessons learned while porting to ARMv8 64bits. Polito et al. MPLR’21

* Numbers by 05/2021
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Evaluation

• 3 bytecode compilers + 1 native method compiler


• 4928 tests generated


• 478 differences
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Analysis of Differences through Manual Inspection

• 91 causes, 6 different categories


• Errors both in the interpreter AND the compilers


• 14 causes of segmentation faults!
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Characterising Concolic Execution
Paths per instruction

1
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Bytecode Native Method
Paths per Instruction
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Paths per 
Type of 

Instruction

• Native methods present in 
average more paths than 
bytecode instructions 
 
=> longer time to explore 
 
=> potentially more bugs

Pa
th

s
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• Test generation ~5 minutes


• Total run time of ~10 seconds


• Avg 30ms per instruction

Practical and Cheap
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Native Method Stack−to−Register Simple Linear−Allocator
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More in the article!

• Discovered Bugs


• Concolic Model


• Testing Infrastructure
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Conclusion

• 478 differences found, 91 causes, 6 
categories 


• Practical:


• 4928 tests generated in ~8 
minutes


• 4928 tests run in ~40 seconds

cold hot hot 

Inter Compiled

Execution

Manage

Test 
Scenarios

1. Test 
Generation

2. Execution 2. Execution

3. Differential Testing

I C

Guille Polito - Pablo Tesone - Stéphane Ducasse

guillermo.polito@univ-lille.fr 
@guillep

����
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Extras
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Simulation + Testing Environment

Production VM (C)

Simulation Environment (Pharo)

Heap

Native Code Cache

Unicorn LLVM 
Disassembler

VM

Interpreter GC JIT Compiler

Transpiled to
Testing 

infrastructure
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Unit Testing Infrastructure Comparison

Real Hardware 
Execution

Full-System 
Simulation

Unit-Testing

Feedback-
cycle speed

Very low Low High

Availability Low High High

Reproducibilit
y

Low Low High

Precision High Low Low

Debuggability Low High High
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concolic execution

Path negation

Concolic Execution #1 Concolic Execution #2 Concolic Execution #3 Concolic Execution #4 Concolic Execution #5

Exit: invalid frame Exit: success Exit: failure Exit: failure Exit: failure
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