
GildaVM:
a Non-Blocking I/O Architecture for the Cog VM

Pablo Tesone
Pharo Consortium

�1

Guille Polito
CNRS UMR9189

CRIStAL, Inria

RMoD

Eliot Miranda
Stellect Systems Inc

David Simmons
The Light Phone, USA

Blocking I/O

!2

• I/O execution blocks the interpreter

• While in a I/O call the interpreter is blocked

• E.g., System-calls, FFI

FFI? Foreign Function Interface

Image

VM

External LibrariesFFI

We can communicate with anything that
has a C API

Operating System API

!3

Unified FFI in a nutshell

UFFI handles:
- Look-up of functions
- Marshalling of arguments
- Execution
- Marshalling of the return values

!4

Concurrency in Pharo

!5

P1 P2 P3 Interpreter
Thread

p1

p3

p1

p2

p2

Concurrency in Pharo

!6

P1 P2 P3 Interpreter
Thread

p1

p3

p1

p2

p2
Interpreter

handles
process

scheduling

Concurrency in Pharo

!7

P1 P2 P3 Interpreter
Thread

p1

p3

p1

p2

p2

p1

int function(char* foo, int bar)

Concurrency in Pharo

!8

P1 P2 P3 Interpreter
Thread

p1

p3

p1

p2

p2

p1

Out
of

Interpreter

Interpreter
loses

control

int function(char* foo, int bar)

What we want!

int function(char* foo, int bar)

!9

P1 P2
Interpreter

#1
Interpreter

#2

What we want!

int function(char* foo, int bar)

!10

P1 P2
Interpreter

#1
Interpreter

#2

• Requires extensive modification of VM,
Plugins and Image core libraries

• Applications should be written with threading
in mind

• Real multithreading not only for FFI

Proposal: Global Interpreter Lock VM

int function(char* foo, int bar)

P1 P2 Interpreter
#1

Interpreter
#2

!11

Research Questions

• RQ1: How does scheduling work in presence of
processes and native threads?

• RQ2: What is the overhead of thread switching?

!12

Process scheduling with
many VM threads

!13

P1 P2 P3 VM Thread #1

p1

p1

p2

VM Thread #2

p3

p2

One VM Thread owns the VM at each time

Process Affinity

!14

p3 bindToThreadId: 2

• Explicit binding

• When a process is activated, it is
run in the affined thread

• Or in the same thread if not affined

VM Thread #1

p1

p1

p2

VM Thread #2

p3

p2

Disown VM

Own VM

Non-blocking FFI

!15

• Before FFI calls the current
thread disowns the VM

• Another thread owns the VM

• Non-blocked processes are
scheduled

VM Thread #1

p1

p1

p2

VM Thread #2

p2

Disown VM

Own VM

Short 
callouts?

!16

• If naive, each disown creates a
lot of overhead!

VM Thread #1

p1

p1

p2

VM Thread #2

p2

Disown VM

Own VM

Own VM

Disown VM

p1

p2

Disown VM

Own VM

Own VM

Disown VM

sleep

verify

VM Thread #1

p1

p1

p2

VM Thread #2

Disown VM

verify

Watchdog

sleep

Own VM

verify

sleep

vm thread can continue!

p1

Watchdog Native Thread

!17

• A watchdog periodically
verifies if the VM is busy

• If idle, selects a thread with
work to do and activate it

sleep

verify

VM Thread #1

p1

p1

p2

VM Thread #2

Disown VM

verify

Watchdog

sleep

Own VM

verify

sleep

vm thread can continue!

p1

Short calls

!18

• The watchdog sleeping
window defines the
“length” of the short call

sleep

verify

VM Thread #1

p1

p1

p2

VM Thread #2

Disown VM

verify

Watchdog

sleep

verify

sleep

Own VM

p2

Long call preemption

!19

• The watchdog sleeping window
also defines the max “length” of
idle-ness

Process switch 
without affinity

50 iterations, mean showed
!20

Long I/Os

sequencial

concurrent processes

2 one-sec callouts

50 iterations, mean showed
!21

Short calls

sequencial

concurrent processes

100,000 short callouts

50 iterations, mean showed
!22

• Callbacks

• Reentrant callbacks

•

• More on preemption

• Implementation details

•

Also in the paper…

!23

sleep

verify

VM Thread #1

p1

p1

p2

VM Thread #2

Disown VM

verify

Watchdog

sleep

Own VM

verify

sleep

vm thread can continue!

p1

Future Work #1:
watchdog impact

• If the watchdog window
is not aligned with the
FFI calls, short callouts
are recognised as long
ones (false positives)

• Long watchdog window
will recognise long calls
as short calls and be
blocking (false negatives)

!24

Future Work #2: 
thread management

• Should VM threads be created implicitly or explicitly?

• Should the thread pool be size-bound? Analyse strategies
for particular applications.

!25

Conclusion

• A Global interpreter lock architecture for green-threaded
smalltalk implementations

• Good for parallelising long blocking I/O

• Some strategies to reduce the overhead of thread switch

Pablo Tesone
Pharo Consortium

Guille Polito
CNRS UMR9189

CRIStAL, Inria

RMoD

Eliot Miranda
Stellect Systems Inc

David Simmons
The Light Phone, USA

