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Blocking I/O
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• I/O execution blocks the interpreter


• While in a I/O call the interpreter is blocked


• E.g., System-calls, FFI



FFI? Foreign Function Interface

Image

VM

External LibrariesFFI

We can communicate with anything that 
has a C API

Operating System API
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Unified FFI in a nutshell

UFFI handles:  
- Look-up of functions 
- Marshalling of arguments 
- Execution 
- Marshalling of the return values
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Concurrency in Pharo
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Concurrency in Pharo
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Concurrency in Pharo
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Concurrency in Pharo
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What we want!

int function(char* foo, int bar)
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What we want!

int function(char* foo, int bar)
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• Requires extensive modification of VM, 
Plugins and Image core libraries 

• Applications should be written with threading 
in mind

• Real multithreading not only for FFI



Proposal: Global Interpreter Lock VM

int function(char* foo, int bar)

P1 P2 Interpreter 
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Interpreter 
#2
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Research Questions

• RQ1: How does scheduling work in presence of 
processes and native threads?


• RQ2: What is the overhead of thread switching?
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Process scheduling with 
many VM threads
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Process Affinity
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p3 bindToThreadId: 2

• Explicit binding


• When a process is activated, it is 
run in the affined thread


• Or in the same thread if not affined
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Non-blocking FFI
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• Before FFI calls the current 
thread disowns the VM


• Another thread owns the VM


• Non-blocked processes are 
scheduled
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Short 
callouts?
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• If naive, each disown creates a 
lot of overhead!
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sleep

verify
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vm thread can continue!
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Watchdog Native Thread
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• A watchdog periodically 
verifies if the VM is busy


• If idle, selects a thread with 
work to do and activate it
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Short calls
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• The watchdog sleeping 
window defines the 
“length” of the short call
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Long call preemption

!19

• The watchdog sleeping window 
also defines the max “length” of 
idle-ness



Process switch 
without affinity

50 iterations, mean showed
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Long I/Os

sequencial

concurrent processes

2 one-sec callouts

50 iterations, mean showed
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Short calls

sequencial

concurrent processes

100,000 short callouts

50 iterations, mean showed
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• Callbacks


• Reentrant callbacks


•

• More on preemption


• Implementation details


•

Also in the paper…
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sleep

verify
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Future Work #1: 
watchdog impact

• If the watchdog window 
is not aligned with the 
FFI calls, short callouts 
are recognised as long 
ones (false positives)


• Long watchdog window 
will recognise long calls 
as short calls and be 
blocking (false negatives)
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Future Work #2: 
thread management

• Should VM threads be created implicitly or explicitly?


• Should the thread pool be size-bound? Analyse strategies 
for particular applications.
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Conclusion

• A Global interpreter lock architecture for green-threaded 
smalltalk implementations


• Good for parallelising long blocking I/O


• Some strategies to reduce the overhead of thread switch
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