
Challenges in Debugging
Bootstraps of Reflective

Kernels

Carolina Hernández Phillips

INRIA Lille Nord Europe

IMT Lille Douai

Noury Bouraqadi

IMT Lille Douai

Luc Fabresse

IMT Lille Douai

Stéphane Ducasse

INRIA Lille Nord Europe

Guille Polito

Univ. Lille, CNRS, CRIStAL

Pablo Tesone

Pharo Consortium

�1

Why generating custom application runtimes for IoT?

Small Hardware requires software

Limited processing capabilities, storage, battery

!2

Existing approaches: Generating lightweight implementations of
Languages from scratch

Implement from scratch: VM, base libraries, compiler

Implies complex low level implementation

Requires high expertise to develop!

!3

Our high level approach: Bootstrapping reflective kernels

• Bootstrapping is to generate a system using a previous version
of the system that is being generated

• Therefore we can use the high level abstractions and the
reflective capabilities of both systems during the bootstrap

• The result is a small Kernel (an image in the case of Pharo) which
can be executed by the same VM that executes its previous version

!4

Demo
Let’s Bootstrap PharoCandle

(a Pharo micro kernel)

!5

Virtual Machine

Host SystemLanguage Definition
1. GENERATE

2.LOAD 3.EXECUTE

Bootstrap

Kernel App entry
point

!6

Defects and Failures

!7

 Defect: error in Language Definition

 Failure: incorrect result during the Bootstrap

Virtual Machine

Host SystemLanguage Definition

Kernel

1. GENERATE

2.LOAD 3.EXECUTE

Defects & Failures

Kernel App entry
point

!8

Structural Defect

 Defect: error in Language Definition

Defects Classification

Language Definition

Structural Definitions
of Classes

Methods Definitions

Class PCPoint

 superclass : PCObject,

 instVars : { ‘x’, ’y’ },

 type : variable

PCPoint >> + arg {
 ^ (x + arg x) @ (y + arg y)

}

PCPoint >> crossProduct: aPoint {

	 ^ x * aPoint y - (y * aPoint x)

}

…

Semantic Defect

fixed

x

!9

 Defect: error in Language Definition

Semantic Defects are Dangerous

Language Definition

Structural Definitions
of Classes

Methods Definitions

Host System

Kernel

1. GENERATE

Reflective Ops

PCClassBuilder >> installMethod: aCompiledMethod inClass: aClass {

aClass methodDictionary add: aCompiledMethod

}

Modify

!10

Semantic Defects in

reflective methods

modify the structural

definitions in the Kernel

The why of defects

!11

Structural Defect

 Defect: error in Language Definition

Defects

Language Definition

Structural Definitions
of Classes

Methods Definitions

Class PCPoint

 superclass : PCObject,

 instVars : { ‘x’, ’y’ },

 type : variable

PCPoint >> + arg {
 ^ (x + arg x) @ (y + arg y)

}

PCPoint >> crossProduct: aPoint {

	 ^ x * aPoint y - (y * aPoint x)

}

…

Semantic Defect

fixed

x

!12

• Virtual Machine requirements

• Application requirements

Kernel

The why of Defects

Virtual Machine

2.LOAD

Kernel

PCMainApplication >> entryPoint {

 PCMyClass doSomething

}

Class PCArray

 superclass : PCObject,

 instVars : { },

 Type : variable

Virtual Machine

3.EXECUTE

Smalltalk stack dump: 0xbffc8fd0 M
>species 0x6e4e350: a(n) bad class 0xbffc7c0c M
>copyReplaceFrom:to:with: 0x6e4e350: a(n) bad class 0xbffc7c30 M
>, 0x6e4e350: a(n) bad class 0xbffc7c5c I
>doesNotUnderstand: activeProcess 0x6e2f7c0: a(n) bad class 0xbffc7c88 I
>doesNotUnderstand: activeProcess 0x6e2f7c0: a(n) bad class

Segmentation Fault

X

X

!13

Why is it hard to find the defects back?

• We are debugging the VM

• We lose great part of the abstractions of the generated
language

!14

Taxonomy of Errors
and proposed Solutions

!15

Taxonomy of Errors and Solutions

Failure Stage

Generation Loading Execution

Defect Type

Structural

Semantic

!16

Taxonomy of Errors and Solutions

Failure Stage

Generation Loading Execution

Defect Type

Structural VM
requirement

VM
requirement

VM
requirement

Semantic VM
requirement

Application
requirement

Static Tests on
Language Definition +

Base Language Definition

!17

Kernel

Virtual Machine

Host System
1. GENERATE

2.LOAD 3.EXECUTE

! App entry
point

Methods Definitions Reflective Ops

Structural Definitions
of Classes

Static Tests on
Language Definition

Language Definition

Extensible Base
Language Definition

!18

(They reify the

VM requirements)

Taxonomy of Errors and Solutions

Failure Stage

Generation Loading Execution

Defect Type

Structural VM
requirement

VM
requirement

VM
requirement

Semantic VM
requirement

Application
requirement

Static Tests on
Language Definition +

Base Language Definition

Static Tests on
Kernel + Hybrid Debugger

!19

Structural Definitions
of Classes

Virtual Machine

Language Definition

2.LOAD 3.EXECUTE

Kernel App entry
point

Methods Definitions

Kernel

1. GENERATE

Reflective Ops

+

Static Tests on
Language Kernel Hybrid Debugger

Host System

!20

3 Execution levels:
- Language definition code

- Pharo code

- VM code

2 new Debugging Operations

- Step Down

- Step Up

Taxonomy of Errors and Solutions

Failure Stage

Generation Loading Execution

Defect Type

Structural VM
requirement

VM
requirement

VM
requirement

Semantic VM
requirement

Application
requirement

Static Tests on
Kernel + Hybrid Debugger

Simulated Execution

Static Tests on
Language Definition +

Base Language Definition

!21

Host System

Structural Definitions
of Classes

Virtual Machine

1. GENERATE

2.LOAD 3.EXECUTE

Kernel App entry
point

Reflective OpsMethods Definitions

Kernel

Execution Simulator
AST interpreter

+
VM simulator

App entry
point

Language Definition

Lookup

R/W objects

!22

Taxonomy of Errors and Solutions

Failure Stage

Generation Loading Execution

Defect Type

Structural VM
requirement

VM
requirement

VM
requirement

Semantic VM
requirement

Application
requirement

Static Tests on
Kernel + Hybrid Debugger

Simulated Execution

Static Tests on
Language Definition +

Base Language Definition

All these solutions can be used to debug
the current Pharo bootstrap process!!

!23

Research Directions

• Define the Pharo VM requirements, and model them for future modifications in
future VM implementations

• Maximise the flexibility of the extensible base language definition, to maximise
the range of languages that we can define from it

• Explore what is a good design for the hybrid debugger, so it contains the correct
abstractions for debugging the bootstrap process

• Explore the limitations for the simulated execution environment

• Explore a way to debug failures hard to reproduce and which occur in production
environment

• Shrinking the VM by removing unused plugins, which will be determined by
dynamically analysing the simulated execution and its interaction with the VM
simulator

!24

Conclusions

• Analysis of Pharo Bootstrap process

• Taxonomy of Defects and Failures

• Proposed Solutions for each kind of error

carolina.hernandez-phillips@inria.fr

!25

Carolina Hernández Phillips

