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Reusing libraries between two versions of the 
language 
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Library

Pharo 2 (2012) Pharo 7 (2018)

Motivation



Problems of old libraries in new language versions
Examples of language changes that break programs:

- Syntax changes.
- Standard library changes (public classes, APIs).
- Other examples: Meta-model changes, compiler semantics changes.
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var _ 17.

var := 17.

method getSource.

method sourceCode.

Motivation



Virtualization-inspired language compatibility
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Pharo 2 (2012) Pharo 7 (2018)

Library Library

Pharo 2 => Pharo 7 Hypervisor

Our approach



Reusable compatibility layer
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Pharo 2 (2012) Pharo 7 (2018)

Library Library

Pharo 2 => Pharo 7 Hypervisor

Another
Library

Another
Library

Our approach



Research question: how do we 
build a compatibility layer ?
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Pharo 7 (2018)

Library

Pharo 2 => Pharo 7

Another
Library



Challenges of language virtualization
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Challenges of language virtualization
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Challenges of language virtualization
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Techniques for language virtualization

● Kernel indirection. 
● Dynamic code rewriting
● Modules for isolation
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Kernel Indirection

 Entity with the same 
name we expect exists, 
we reuse it with 
inheritance.
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Techniques for language virtualization



Solving incompatibilities with inheritance
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2012

2018

Techniques for language virtualization



Solving name conflicts with modules

Same name allowed in different modules.
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Techniques for language virtualization



Dynamic code rewriting

Kernel indirection is not 
enough.
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Techniques for language virtualization



Solving incompatibilities through code rewritings

Transparent for the library.

Rewriting done through AST 
annotations.
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method getSource.

method sourceCode.

bytecode transformation

Techniques for language virtualization



Retrieve missing behavior

-Retrieve old behavior if 
we have an archive.

-Assume behavior and 
code it (TDD).
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Techniques for language virtualization



Solving missing classes with late class creation

ColorPoint cannot be created without  its 
superclass Point.
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Introduced a class AST to analyse it before class creation

-Detection of missing references.

-React to the missing references (modify the class creation).

?

Techniques for language virtualization



Validation

We execute old Pharo programs in a newer version of Pharo with a hypervisor.

Hypothesis: the program had all tests passing in the old version.

Goal: make those tests pass in the newer version with the hypervisor.

/!\ It does not mean the program is working (low test coverage)
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Scenario1: Mutalk
Virtualizer strategies created with this scenario.

-45 missing entities

-37 reimplemented in 
hypervisor

-355/362 tests 
passing
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-8 remainings missing entities 
are for graphical behaviors or 
not tested
-7 failing tests are linked to the 
8 remainings missing entities



Scenario (Bonus): NesTalk
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Show time !!



Scenario 2: Fuel

-79 missing entities

-67 reimplemented in hypervisor + stream compatibility

-19/239 tests passing 
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We encountered new challenges:

- Fuel assumes a single global environment
- The compatibility layer is not hidden to reflective operations
- Extension methods needs to be scoped to the compatibility layer or 

library



Future work
Compatibility layer superposition?
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Last Pharo version

Compatibility Pharo 3

Compatibility Pharo 2

Compatibility Pharo 1

A compatibility layer with another language?

Relation with PharoGs?

………...

Library in C

Compatibility C

Last Pharo version



Conclusion
Language changes cause compatibility problems.

We propose a compatibility layer between different pharo versions.

We validate our approach by running old applications in new versions.

We discover new challenges to overcome.

Questions ?
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