
Towards easy program
migration using language

virtualization

1

Théo Rogliano, Pablo Tesone, Guille Polito

Agenda

1.Motivation: reusing old libraries in new versions of the language

2.Our approach: Virtualization-inspired language compatibility

3.Techniques for language virtualization: overcoming the challenges

4.Validating our virtualization approach

5.Future and conclusion

2

Reusing libraries between two versions of the
language

3

Library

Pharo 2 (2012) Pharo 7 (2018)

Motivation

Problems of old libraries in new language versions
Examples of language changes that break programs:

- Syntax changes.
- Standard library changes (public classes, APIs).
- Other examples: Meta-model changes, compiler semantics changes.

4

var _ 17.

var := 17.

method getSource.

method sourceCode.

Motivation

Virtualization-inspired language compatibility

5

Pharo 2 (2012) Pharo 7 (2018)

Library Library

Pharo 2 => Pharo 7 Hypervisor

Our approach

Reusable compatibility layer

6

Pharo 2 (2012) Pharo 7 (2018)

Library Library

Pharo 2 => Pharo 7 Hypervisor

Another
Library

Another
Library

Our approach

Research question: how do we
build a compatibility layer ?

7

Pharo 7 (2018)

Library

Pharo 2 => Pharo 7

Another
Library

Challenges of language virtualization

8

Challenges of language virtualization

9

Challenges of language virtualization

10

Techniques for language virtualization

● Kernel indirection.
● Dynamic code rewriting
● Modules for isolation

11

Kernel Indirection

 Entity with the same
name we expect exists,
we reuse it with
inheritance.

12

Techniques for language virtualization

Solving incompatibilities with inheritance

13

2012

2018

Techniques for language virtualization

Solving name conflicts with modules

Same name allowed in different modules.

14

Techniques for language virtualization

Dynamic code rewriting

Kernel indirection is not
enough.

15

Techniques for language virtualization

Solving incompatibilities through code rewritings

Transparent for the library.

Rewriting done through AST
annotations.

16

method getSource.

method sourceCode.

bytecode transformation

Techniques for language virtualization

Retrieve missing behavior

-Retrieve old behavior if
we have an archive.

-Assume behavior and
code it (TDD).

17

Techniques for language virtualization

Solving missing classes with late class creation

ColorPoint cannot be created without its
superclass Point.

18

Introduced a class AST to analyse it before class creation

-Detection of missing references.

-React to the missing references (modify the class creation).

?

Techniques for language virtualization

Validation

We execute old Pharo programs in a newer version of Pharo with a hypervisor.

Hypothesis: the program had all tests passing in the old version.

Goal: make those tests pass in the newer version with the hypervisor.

/!\ It does not mean the program is working (low test coverage)
19

Scenario1: Mutalk
Virtualizer strategies created with this scenario.

-45 missing entities

-37 reimplemented in
hypervisor

-355/362 tests
passing

20

-8 remainings missing entities
are for graphical behaviors or
not tested
-7 failing tests are linked to the
8 remainings missing entities

Scenario (Bonus): NesTalk

21

Show time !!

Scenario 2: Fuel

-79 missing entities

-67 reimplemented in hypervisor + stream compatibility

-19/239 tests passing

22

We encountered new challenges:

- Fuel assumes a single global environment
- The compatibility layer is not hidden to reflective operations
- Extension methods needs to be scoped to the compatibility layer or

library

Future work
Compatibility layer superposition?

23

Last Pharo version

Compatibility Pharo 3

Compatibility Pharo 2

Compatibility Pharo 1

A compatibility layer with another language?

Relation with PharoGs?

………...

Library in C

Compatibility C

Last Pharo version

Conclusion
Language changes cause compatibility problems.

We propose a compatibility layer between different pharo versions.

We validate our approach by running old applications in new versions.

We discover new challenges to overcome.

Questions ?
24

Théo Rogliano

