
IMPROVING
CODE COMPLETION
work by
Myroslava Romaniuk and Marcus Denker

What is Code Completion?

Problem

➥ on a Parser level
➥ on a Model level
➥ on a Sorter level

Problem: parser

Old completion used a dedicated parser
(Shout) that was originally shared with
syntax highlighter

Solution: use RB Parser

RBParser is used for syntax highlighting
We parse at every keystroke!
We can parse with Syntax Errors

Solution: parseSource

Solution: TypingVisitor

AST has not enough information
self, super, class of literals, Globals and

direct assignments to temps.

Solution: type check

Problem: model

Code is very hard to understand and change.
And the implementation behind the model
itself is unnecessarily complicated

Solution: model

➥ Type annotated AST
➥ CompletionProducer for suggesting

completion options based on node type

Solution: finding nodes

Solution: model results

➥ Using the AST simplifies the code a lot
➥ It is faster (no Benchmarks yet)

Problem: sorter

It was very difficult to implement a sorting
strategy as there was no separate
implementation of sorting

Solution: sorter

➥ you can choose the sorting strategy you
want in the settings (alphabetic by default)

➥ sorting strategies based on n-gram and
OCompletion will be added later

Refactoring results

of classes 43 vs 22
of methods 485 vs 243
lines of code 3369 vs 1383

More improvements

➥ added completion for symbols
➥ fixed AST implementation

Fixing AST bugs

➥ incorrect stop in RBSequenceNode
➥ incorrect start in ParseErrorNode
➥ not recognising missing closing ‘|’ in

temp declaration as incorrect syntax

Future work

➥ ML based sorting strategy
➥ completing with syntax errors
➥ going beyond selector completion

Thanks!

@myroslavarm

@marcusdenker

romaniuk@ucu.edu.ua

marcus.denker@inria.fr

