CODE COMPLETION

work by
Myroslava Romaniuk and Marcus Denker

What is Code Completion?

visitMethodNode: aRBMethodNode

A(self select: self meﬂ)_
methodNames

CompletionProducer

Problem

w on aParser
w 0on aModel
w onaSorter

eve
eve
eve

Problem: parser

Old completion used a dedicated parser
(Shout) that was originally shared with
syntax highlighter

Solution: use RB Parser

RBParser is used for syntax highlighting
We parse at every keystroke!
We can parse with Syntax Errors

Solution: parseSource

parseSource

ast := theClass
ifNil: [(RBParser parseFaultyExpression: source)
doSemanticAnalysis]
ifNotNil: [(RBParser parseFaultyMethod: source)
doSemanticAnalysisIn: theClass].
TypingVisitor new visitNode: ast

Solution: TypingVisitor

AST has not enough information
self, super, class of literals, Globals and
direct assignments to temps.

Solution: type check

receiverClass
node isMessage ifFalse: [*nil].
Anode receiver propertyAt: #type ifAbsent: [nil]

Problem: model

Coc
Anc

itse

e is very hard to understand and change.
the implementation behind the model
fis unnecessarily complicated

Solution: model

w Type annotated AST
w CompletionProducer for suggesting
completion options based on node type

Solution: finding nodes

nodeForOffset: anInteger
| children |
"choosing the best node on the speci
children := self children.
"when we are on a leaf, we take the leaf node"

(children isEmpty) ifTrue: [(self sourcelInterval includes: anInteger) ifTrue: [%self]].

"if the node has children then we check the children'

children do: [:each | (each sourceInterval includes: anInteger) ifTrue: [*each nodeForOffset:

anInteger]].

Solution: model results

w Using the AST simplifies the code a lot
w [t isfaster (ho Benchmarks yet)

Problem: sorter

It was very difficult to implement a sorting
strategy as there was no separate
Implementation of sorting

Solution: sorter

w you can choose the sorting strategy you
want in the settings (alphabetic by default)

w sorting strategies based on n-gram and
OCompletion will be added later

Refactoring results

of classes 43 vs 22
of methods 485 vs 243
lines of code 3369 vs 1383

More improvements

w added completion for symbols
w fixed AST implementation

Fixing AST bugs

w ncorrect stop in RBSequenceNode
w ncorrect start in ParseErrorNode
w not recognising missing closing ‘|’ in
temp declaration as incorrect syntax

Future work

w ML based sorting strategy
w completing with syntax errors
w ooing beyond selector completion

Thanks!

Y @myroslavarm DA romaniuk@ucu.edu.ua

y @marcusdenker g marcus.denker@inria.fr

