4
|
—/

RPC in Smalltalk

Annick Fron
http://www.afceurope.com

. u | ‘-
http://www.fencingfox.com \J
!
"’
@ AFC Europe - ESUG 2019 5 7/22/19

(S

Distributed applications

ARCHITECTURES

REPARTIES Dunod 2015, 3" edition
EN JAVA Java Distributed
Architecture

Software consultant,
not academic

@ AFC Europe - ESUG 2019 7/22/19

u\/ -

es in Distributed Computing (peter Deut

k'is reliable : redundancy, intermediate storage

s zero : 30s for light between US and Europe ; latency using Ajax
idth is infinite : packets are limited in size

he network is secure : must understand firewalls, passwords,etc.
Topology doesn't change : endpoints, alias, abstract naming, host names...
There is one administrator : monitoring, interoperability contracts
Transport cost is zero : routers, servers...

The network is homogeneous : try to stick to standards

@ AFC Europe - ESUG 2019 7/22/19 3 \/

N U \ y,

https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Latency_(engineering)
https://en.wikipedia.org/wiki/Throughput
https://en.wikipedia.org/wiki/Computer_security
https://en.wikipedia.org/wiki/Network_topology
https://en.wikipedia.org/wiki/Network_administrator

The Smurfs

TTP,

Cloud,
Relational
database
A S
®
-/

¥

@ AFC Europe - ESUG 2019 /

« TCP

* More “reliable” because of
handshake... but less tolerant to

Limited size messages _ .
network disconnection

e Faster (no handshake)
e Used by HTTP

e Used by video

Swiss Army

knife for ANY \/
language ! L J

RPC 7

Streaming and web sockets

Remote notification

* And then non functional properties : redundancy, security, reliability, resource pooling... o

@ AFC Europe - ESUG 2019 7/22/19 8 \/

T QY)

oint : URL, registry key, endpoint(web service);

nsions to pool of workers or security policies

nsport : TCP, UDP, HTTP, MQ ...

* Marshalling/unmarshalling

Marshalling/unmarshalling

, BOSS

ject
references

> /[l’:/ .

@ AFC Europe - ESUG 2019 7/22/19 10 \-/

Y QY)

esNotUnderstand for proxies to modify behaviour

ject is always able to perform a selector passed as a string

y reference / by value

e \alue

y for large objects * Client may work independently,

May imply handling distributed GC looses sync on server

e Large chunks being passed on the
network

e C(Client and server in sync

* Ping pong effect for nested objects

o

* |Implies a registry to one or more |
root references

Demo VW

[server start.
client start.
obj :=Account new balance: 3.
server objectAdaptor export: obj oid: #MyAccount.
remoteQb) : = client
remoteObjectToHost: 'localhost’
port: 4242
oid: #MyAccount.
remoteOb) balance: 4.
obj balance = remoteOb) balance

ifTrue: [Dialog warn: 'Correct! ']
ifFalse: [Dialog warn: 'Incorrect! ']
ensure:
[server stop.
client stop|

server :=0pentalk.RequestBroker newStstTcpAtPort: 4242.
client := Opentalk.RequestBroker newStstTcpAtPort: 4243.

server :=0pentalk.RequestBroker newStstTcpAtPort: 4242.
client := Opentalk.RequestBroker newStstTcpAtPort: 4243.

'server start.
client start.

obj := (Account new balance: 3).

server objectAdaptor export: ob) sixxString oid: #MyString.
remoteString:=(client
remoteQObjectToHost: 'localhost’
port: 4242
oid: #MyString) .
remoteQbj := (Sxx.SixxReadStream on: remoteString readStream) contents first.
remoteQbj balance: 4.
remoteQbj balance = ob) balance
ifTrue: [Dialog warn: ‘Correct! '] @
ifFalse: [Dialog warn: 'Incorrect! ']

estions

ing classes ? Passed by name. But a class in one instance is recognize
ass in the other instance. This is not true in other languages Corba on C
requires mapping of vtables). In Java a class in a class loader is different from
the same class in another class loader, or in another memory space. Strong

typing is a looser across memory spaces
e Passing errors ? Errors raise errors on the distant image

e Instvars can have individual passing policies (or none)

"L Y

|\ e/
b1l := Opentalk.RequestBroker newStstTcpAtPort: 4242.
b2 := Opentalk.RequestBroker newStstTcpAtPort: 4243.
b3 := Opentalk.RequestBroker newStstTcpAtPort: 4244.
[bl start. b2 start. b3 start.
"Register the front relay of the event channel”
front := Opentalk.UcastEventService new.
b1 registerService: front id: ‘channell’.
"Register backl of the relay channel and plug Transcript into it”
back2 := Opentalk.UcastEventService new.
b2 registerService: back2 id: 'channell’.
remoteService2 := ((b2 activeBrokerAtHost: ‘localhost’ port: 4242)
serviceByld: 'channell’) addRelay: back2.
back2 when: #show: send: #show: to: Transcript.
"Register back2 of the relay channel and plug Transcript into it”
back3 := Opentalk.UcastEventService new.
b3 registerService: back2 id: 'channell’.
remoteService3 := ((b3 activeBrokerAtHost: ‘localhost’ port: 4242)
serviceByld: ‘channell’)
addRelay: back3.
back3 when: #show: send: #show: to: Transcript.
"And now try to trnigger a #show event at the front”
front triggerEvent: #show: with: 'Hello! '.
] ensure: [b1 stop. b2 stop. b3 stop]

le transport : TCP, UDP

ping to historical CORBA, IIOP : may call other languages like Java, C+
13S provides transparent RPC with custom instvar policies (value, reference)

e Event service allows remote event notification

U

n Pharo

eference or pass by value semantics

itial reference : Whole environment

Metacello new
baseline: 'Seamless';
repository: 'github://pharo-ide/Seamless’';

load.

network := SeamlessNetwork new.

network startServerOn: 40422.

remotePeer := network remotePeerAt: (TCPAddress ip: #[127 © © 1] port:
40422).

remoteSmalltalk := remotePeer remoteEnvironment.
remoteTranscript := remoteSmalltalk at: #Transcript.
remoteTranscript open; show: 'remote message'; cr é}

=N

Y O “

ntics supported

Object>>seamlessDefaultTransferStrategy
ASeamlessTransferStrategy defaultByReference

Number>>seamlessDefaultTransferStrategy
ASeamlessTransferStrategy defaultByValue

SON for marshalling

"https://github.com/juliendelplanque/JRPC"

server := JRPCServer http
port: 4000;
addHandlerNamed: 'sqrt' block: [:x | x sqrt];
yourself.

server start.
server stop.

(JRPCClient http: 'http://localhost:4000")
callMethod: 'sqgrt' arguments: #(4) withId: 1 €}

an image for remoting

ify system objects (CairoContext, files, processes ...) which can't p

Analyse the calling sequence to minimize ping pong : can require creating new
objects which are “summaries” of some other objects, like views in a database

* Decide on pass by value/ pass by reference

e Always release ressources -,

request with handler
r default delegate: (ZnWebSocketDelegate handler:

:webSocket |

[| message |
message := webSocket readMessage.

webSocket sendMessage: message] repeat). |

"YU o B /

ues as sockets : strings and byte arrays, no objects

eb socket per page needs to be parsed to different fields

andling disconnections

* Transport: HTTP
* Copy semantics

e SOAP Envelope for non functional aspects (?) |

.

stone

Gemstone as a distributed shared memory

ts are shared in the images

ut notification of change needed to update interface : use of notifySets wit
the interface as a callback

e Use gemstone signalling between computers

notification mechanisms

notifySets to update the GUI

addToNotifySet: leTournoi competition poules first.

ssionl notificationAction: [:idSet | callbacks do:].

* Using Gem to gem signalling for workflow

session gemSignalAction:

o

[:aSession :aSignalNumber :aString |

self handleSignalFrom: aSession number: aSignalNumber string: aString]. \/

N

, BRPC (Google)

reaming : mixing data and signals

	Diapo 1
	Distributed applications
	8 fallacies
	Diapo 4
	Diapo 5
	RPC is hard : all weapons welcome!
	Diapo 7
	RPC ?
	Diapo 9
	Marshalling/unmarshalling
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29

