
RPC in Smalltalk

Annick Fron
http://www.afceurope.com
http://www.fencingfox.com

7/22/19@ AFC Europe - ESUG 2019 1

Distributed applications

7/22/19@ AFC Europe - ESUG 2019 2

Dunod 2015, 3rd edition

Java Distributed
Architecture

Software consultant,
not academic

8 fallacies in Distributed Computing (Peter Deutsch 1994)
• The network is reliable : redundancy, intermediate storage

• Latency is zero : 30s for light between US and Europe ; latency using Ajax

• Bandwidth is infinite : packets are limited in size

• The network is secure : must understand firewalls, passwords,etc.

• Topology doesn't change : endpoints, alias, abstract naming, host names...

• There is one administrator : monitoring, interoperability contracts

• Transport cost is zero : routers, servers...

• The network is homogeneous : try to stick to standards

7/22/19@ AFC Europe - ESUG 2019 3

https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Latency_(engineering)
https://en.wikipedia.org/wiki/Throughput
https://en.wikipedia.org/wiki/Computer_security
https://en.wikipedia.org/wiki/Network_topology
https://en.wikipedia.org/wiki/Network_administrator

The Smurfs

HTTP,
Cloud,
Relational
database

RPC is hard : all weapons welcome!

7/22/19@ AFC Europe - ESUG 2019 6

Sockets : don't understand objects !

● UDP

● Allows broadcast

● Limited size messages

● Faster (no handshake)

● Used by video

● TCP

● More “reliable” because of
handshake... but less tolerant to
network disconnection

● Used by HTTP

Swiss Army
knife for ANY
language !

RPC ?

• Remote Procedure Call

• Remote events

• Data sharing

• Streaming and web sockets

• Remote notification

• And then non functional properties : redundancy, security, reliability, resource pooling...

7/22/19@ AFC Europe - ESUG 2019 8

RPC

● Contact point : URL, registry key, endpoint(web service);

– extensions to pool of workers or security policies

● Transport : TCP, UDP, HTTP, MQ ...

● Marshalling/unmarshalling

Marshalling/unmarshalling

Sockets are flat

• ASN1, CDR

• JSON

• XML

• Fuel, SIXX, BOSS

• Object
references

•

7/22/19@ AFC Europe - ESUG 2019 10

Naive ideas

● Using doesNotUnderstand for proxies to modify behaviour

● An object is always able to perform a selector passed as a string

Passing by reference / by value

● Reference

● Easy for large objects

● May imply handling distributed GC

● Client and server in sync

● Ping pong effect for nested objects

● Implies a registry to one or more
root references

● Value

● Client may work independently, but
looses sync on server

● Large chunks being passed on the
network

Démo VW

Some questions

● Passing classes ? Passed by name. But a class in one instance is recognized as a
class in the other instance. This is not true in other languages Corba on C
requires mapping of vtables). In Java a class in a class loader is different from
the same class in another class loader, or in another memory space. Strong
typing is a looser across memory spaces

● Passing errors ? Errors raise errors on the distant image

● Instvars can have individual passing policies (or none)

Distributed events and broadcast

RPC in VW

● Pluggable transport : TCP, UDP

● Mapping to historical CORBA, IIOP : may call other languages like Java, C++ or C

● I3S provides transparent RPC with custom instvar policies (value, reference)

● Event service allows remote event notification

Seamless in Pharo

● Pass by reference or pass by value semantics

● Used for remote debug

● Initial reference : Whole environment

Both semantics supported

Object>>seamlessDefaultTransferStrategy
 ^SeamlessTransferStrategy defaultByReference

Number>>seamlessDefaultTransferStrategy
 ^SeamlessTransferStrategy defaultByValue

JRPC : using JSON for marshalling

Preparing an image for remoting

● Identify system objects (CairoContext, files, processes …) which can't pass
though

● Analyse the calling sequence to minimize ping pong : can require creating new
objects which are “summaries” of some other objects, like views in a database

● Decide on pass by value/ pass by reference

● Always release ressources

Web sockets

Wraps http request with handler

ZnServer default delegate: (ZnWebSocketDelegate handler:

 [:webSocket |

 [| message |

 message := webSocket readMessage.

 webSocket sendMessage: message] repeat]).

Web sockets

● Same issues as sockets : strings and byte arrays, no objects

● One web socket per page needs to be parsed to different fields

● Handling disconnections

Web services

● Marshalling: XML

● Endpoint : URL

● WSDL : IDL

● Transport : HTTP

● Copy semantics

● SOAP Envelope for non functional aspects (?)

Using Gemstone

● May use Gemstone as a distributed shared memory

● Objects are shared in the images

● But notification of change needed to update interface : use of notifySets with
the interface as a callback

● Use gemstone signalling between computers

Different notification mechanisms

● Using notifySets to update the GUI

session1 addToNotifySet: leTournoi competition poules first.

session1 notificationAction: [:idSet | callbacks do: ….].

● Using Gem to gem signalling for workflow

session gemSignalAction:

[:aSession :aSignalNumber :aString |

self handleSignalFrom: aSession number: aSignalNumber string: aString].

Conclusion

● Missing testing tools !

● MQTT, gRPC (Google)

● Streaming : mixing data and signals

	Diapo 1
	Distributed applications
	8 fallacies
	Diapo 4
	Diapo 5
	RPC is hard : all weapons welcome!
	Diapo 7
	RPC ?
	Diapo 9
	Marshalling/unmarshalling
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29

