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Distributed applications

7/22/19@ AFC Europe - ESUG 2019 2

Dunod 2015, 3rd edition

Java Distributed 
Architecture

Software consultant, 
not academic



8 fallacies in Distributed Computing (Peter Deutsch 1994) 
• The network is reliable : redundancy, intermediate storage

• Latency is zero : 30s for light between US and Europe  ; latency using Ajax

• Bandwidth is infinite : packets are limited in size 

• The network is secure : must understand firewalls, passwords,etc.

• Topology doesn't change : endpoints, alias, abstract naming, host names...

• There is one administrator : monitoring, interoperability contracts

• Transport cost is zero : routers, servers...

• The network is homogeneous : try to stick to standards

7/22/19@ AFC Europe - ESUG 2019 3

https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Latency_(engineering)
https://en.wikipedia.org/wiki/Throughput
https://en.wikipedia.org/wiki/Computer_security
https://en.wikipedia.org/wiki/Network_topology
https://en.wikipedia.org/wiki/Network_administrator


The Smurfs 



HTTP, 
Cloud, 
Relational 
database



RPC is hard : all weapons welcome!
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Sockets : don't understand objects ! 

● UDP

● Allows broadcast

● Limited size messages

● Faster (no handshake)

● Used by video

● TCP

● More “reliable” because of 
handshake... but less tolerant to 
network disconnection

● Used by HTTP

Swiss Army 
knife for ANY 
language !



RPC ?

• Remote Procedure Call 

• Remote events

• Data sharing

• Streaming and web sockets

• Remote notification

• And then non functional properties : redundancy, security, reliability, resource pooling...
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RPC

● Contact point : URL, registry key, endpoint(web service);

–  extensions to pool of workers or security policies

● Transport : TCP, UDP, HTTP, MQ ...

● Marshalling/unmarshalling 



Marshalling/unmarshalling

Sockets are flat

• ASN1, CDR

• JSON

• XML

• Fuel, SIXX, BOSS

• Object 
references

•
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Naive ideas

● Using doesNotUnderstand for proxies to modify behaviour

● An object is always able to perform a selector passed as a string 



Passing by reference / by value

● Reference

● Easy for large objects

● May imply handling distributed GC

●  Client and server in sync

● Ping pong effect for nested objects

● Implies a registry to one or more 
root references

● Value

● Client may work independently, but 
looses sync on server

● Large chunks being passed on the 
network



Démo VW







Some questions

● Passing classes ? Passed by name. But a class in one instance is recognized as a 
class in the other instance. This is not true in other languages Corba on C 
requires mapping of vtables). In Java a class in a class loader is different from 
the same class in another class loader, or in another memory space. Strong 
typing is a looser across memory spaces

● Passing errors ? Errors raise errors on the distant image

● Instvars can have individual passing policies (or none)



Distributed events and broadcast



RPC in VW

● Pluggable transport : TCP, UDP

● Mapping to historical CORBA, IIOP : may call other languages like Java, C++ or C

● I3S provides transparent  RPC with custom instvar policies (value, reference)

● Event service allows remote event notification



Seamless in Pharo

● Pass by reference or pass by value semantics

● Used for remote debug

● Initial reference : Whole environment





Both semantics supported

Object>>seamlessDefaultTransferStrategy
      ^SeamlessTransferStrategy defaultByReference

Number>>seamlessDefaultTransferStrategy
      ^SeamlessTransferStrategy defaultByValue



JRPC : using JSON for marshalling



Preparing an image for remoting

● Identify system objects (CairoContext, files, processes …) which  can't pass 
though

● Analyse the calling sequence to minimize ping pong : can require creating new 
objects which are “summaries” of some other objects, like views in a database

● Decide on pass by value/ pass by reference

● Always release ressources



Web sockets

Wraps http request with handler

ZnServer default delegate: (ZnWebSocketDelegate handler:

   [ :webSocket |

      [ | message |

         message := webSocket readMessage.

         webSocket sendMessage: message ] repeat ]).



Web sockets

● Same issues as sockets : strings and byte arrays, no objects

● One web socket per page needs to be parsed to different fields

● Handling disconnections



Web services

● Marshalling: XML

● Endpoint : URL

● WSDL : IDL

● Transport : HTTP

● Copy semantics

● SOAP Envelope for non functional aspects (?)



Using Gemstone

● May use Gemstone as a distributed shared memory

● Objects are shared in the images

● But notification of change needed to update interface : use of notifySets with 
the interface as a callback

● Use  gemstone signalling between computers



Different notification mechanisms

● Using notifySets to update the GUI

session1 addToNotifySet: leTournoi competition poules first.

session1 notificationAction: [:idSet | callbacks do: ….].

● Using Gem to gem signalling for workflow

session gemSignalAction: 

[:aSession :aSignalNumber :aString |

self handleSignalFrom: aSession number: aSignalNumber string: aString].



Conclusion

● Missing testing tools !

● MQTT, gRPC (Google)

● Streaming : mixing data and signals
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