4
|
—/

RPC in Smalltalk

Annick Fron
http://www.afceurope.com

. u | ‘-
http://www.fencingfox.com \J
!
"’
@ AFC Europe - ESUG 2019 5 7/22/19

(S




Distributed applications

ARCHITECTURES

REPARTIES Dunod 2015, 3" edition
EN JAVA Java Distributed
Architecture

Software consultant,
not academic

@ AFC Europe - ESUG 2019 7/22/19

u\/ -




es in Distributed Computing (peter Deut

k'is reliable : redundancy, intermediate storage

s zero : 30s for light between US and Europe ; latency using Ajax
idth is infinite : packets are limited in size

he network is secure : must understand firewalls, passwords,etc.
Topology doesn't change : endpoints, alias, abstract naming, host names...
There is one administrator : monitoring, interoperability contracts
Transport cost is zero : routers, servers...

The network is homogeneous : try to stick to standards
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https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Latency_(engineering)
https://en.wikipedia.org/wiki/Throughput
https://en.wikipedia.org/wiki/Computer_security
https://en.wikipedia.org/wiki/Network_topology
https://en.wikipedia.org/wiki/Network_administrator
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« TCP

* More “reliable” because of
handshake... but less tolerant to

Limited size messages _ .
network disconnection

e Faster (no handshake)
e Used by HTTP

e Used by video

Swiss Army

knife for ANY \/
language ! L J



RPC 7

Streaming and web sockets

Remote notification

* And then non functional properties : redundancy, security, reliability, resource pooling... o
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oint : URL, registry key, endpoint(web service);

nsions to pool of workers or security policies

nsport : TCP, UDP, HTTP, MQ ...

* Marshalling/unmarshalling




Marshalling/unmarshalling

, BOSS

ject
references
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esNotUnderstand for proxies to modify behaviour

ject is always able to perform a selector passed as a string



y reference / by value

e \alue

y for large objects * Client may work independently,

May imply handling distributed GC looses sync on server

e Large chunks being passed on the
network

e C(Client and server in sync

* Ping pong effect for nested objects

o

* |Implies a registry to one or more |
root references
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[server start.
client start.
obj :=Account new balance: 3.
server objectAdaptor export: obj oid: #MyAccount.
remoteQb) : = client
remoteObjectToHost: 'localhost’
port: 4242
oid: #MyAccount.
remoteOb) balance: 4.
obj balance = remoteOb) balance

ifTrue: [Dialog warn: 'Correct! ']
ifFalse: [Dialog warn: 'Incorrect! ']
ensure:
[server stop.
client stop|

server :=0pentalk.RequestBroker newStstTcpAtPort: 4242.
client := Opentalk.RequestBroker newStstTcpAtPort: 4243.




server :=0pentalk.RequestBroker newStstTcpAtPort: 4242.
client := Opentalk.RequestBroker newStstTcpAtPort: 4243.

'server start.
client start.

obj := (Account new balance: 3).

server objectAdaptor export: ob) sixxString oid: #MyString.
remoteString:=( client
remoteQObjectToHost: 'localhost’
port: 4242
oid: #MyString) .
remoteQbj := (Sxx.SixxReadStream on: remoteString readStream) contents first.
remoteQbj balance: 4.
remoteQbj balance = ob) balance
ifTrue: [Dialog warn: ‘Correct! '] @
ifFalse: [Dialog warn: 'Incorrect! ']




estions

ing classes ? Passed by name. But a class in one instance is recognize
ass in the other instance. This is not true in other languages Corba on C
requires mapping of vtables). In Java a class in a class loader is different from
the same class in another class loader, or in another memory space. Strong

typing is a looser across memory spaces
e Passing errors ? Errors raise errors on the distant image

e Instvars can have individual passing policies (or none)

"L Y



|\ e/
b1l := Opentalk.RequestBroker newStstTcpAtPort: 4242.
b2 := Opentalk.RequestBroker newStstTcpAtPort: 4243.
b3 := Opentalk.RequestBroker newStstTcpAtPort: 4244.
[ bl start. b2 start. b3 start.
"Register the front relay of the event channel”
front := Opentalk.UcastEventService new.
b1 registerService: front id: ‘channell’.
"Register backl of the relay channel and plug Transcript into it”
back2 := Opentalk.UcastEventService new.
b2 registerService: back2 id: 'channell’.
remoteService2 := ((b2 activeBrokerAtHost: ‘localhost’ port: 4242)
serviceByld: 'channell’) addRelay: back2.
back2 when: #show: send: #show: to: Transcript.
"Register back2 of the relay channel and plug Transcript into it”
back3 := Opentalk.UcastEventService new.
b3 registerService: back2 id: 'channell’.
remoteService3 := ((b3 activeBrokerAtHost: ‘localhost’ port: 4242)
serviceByld: ‘channell’)
addRelay: back3.
back3 when: #show: send: #show: to: Transcript.
"And now try to trnigger a #show event at the front”
front triggerEvent: #show: with: 'Hello! '.
] ensure: [b1 stop. b2 stop. b3 stop]




le transport : TCP, UDP

ping to historical CORBA, IIOP : may call other languages like Java, C+
13S provides transparent RPC with custom instvar policies (value, reference)

e Event service allows remote event notification

U



n Pharo

eference or pass by value semantics

itial reference : Whole environment




Metacello new
baseline: 'Seamless';
repository: 'github://pharo-ide/Seamless’';

load.

network := SeamlessNetwork new.

network startServerOn: 40422.

remotePeer := network remotePeerAt: (TCPAddress ip: #[127 © © 1] port:
40422).

remoteSmalltalk := remotePeer remoteEnvironment.
remoteTranscript := remoteSmalltalk at: #Transcript.
remoteTranscript open; show: 'remote message'; cr é}
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ntics supported

Object>>seamlessDefaultTransferStrategy
ASeamlessTransferStrategy defaultByReference

Number>>seamlessDefaultTransferStrategy
ASeamlessTransferStrategy defaultByValue



SON for marshalling

"https://github.com/juliendelplanque/JRPC"

server := JRPCServer http
port: 4000;
addHandlerNamed: 'sqrt' block: [ :x | x sqrt ];
yourself.

server start.
server stop.

(JRPCClient http: 'http://localhost:4000")
callMethod: 'sqgrt' arguments: #(4) withId: 1 €}




an image for remoting

ify system objects (CairoContext, files, processes ...) which can't p

Analyse the calling sequence to minimize ping pong : can require creating new
objects which are “summaries” of some other objects, like views in a database

* Decide on pass by value/ pass by reference

e Always release ressources -,



request with handler
r default delegate: (ZnWebSocketDelegate handler:

:webSocket |

[ | message |
message := webSocket readMessage.

webSocket sendMessage: message ] repeat ). |
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ues as sockets : strings and byte arrays, no objects

eb socket per page needs to be parsed to different fields

andling disconnections



* Transport: HTTP
* Copy semantics

e SOAP Envelope for non functional aspects (?) |
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stone

Gemstone as a distributed shared memory

ts are shared in the images

ut notification of change needed to update interface : use of notifySets wit
the interface as a callback

e Use gemstone signalling between computers



notification mechanisms

notifySets to update the GUI

addToNotifySet: leTournoi competition poules first.

ssionl notificationAction: [:idSet | callbacks do: ....].

* Using Gem to gem signalling for workflow

session gemSignalAction:

o

[:aSession :aSignalNumber :aString |

self handleSignalFrom: aSession number: aSignalNumber string: aString]. \/

N



, BRPC (Google)

reaming : mixing data and signals
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