
MQTT
MQTT	is	a	machine-to-machine	

(M2M)/"Internet	of	Things"	IOT	connectivity	
protocol.

WHAT?	WHERE?	WHY?	POWER?	TRAFFIC?	RESPONSE?

@	LabWare	ESUG	Aug	2019 By	John	M	McIntosh

MQTT	– Simplistic	(Subscribe	&	Publish:	1	to	many)

https://www.norwegiancreations.com/2017/07/mqtt-what-is-it-and-how-can-you-use-it/

Blob	of	Data	&	a	topic	string

Quality	Of	Service	options	up	to	
guaranteed	delivery of	the	data	
blob.	Data	could	be	persistent,	
for	re-startable situations

MQTT	– Power/Traffic	&	FaceBook?	
Dr Google:	

◦ Up	to	22%	more	energy	efficient & 15%	faster than	HTTP.
Does	not	depend	on	if	the	connection	type	is	3G	or	WiFi.

It	is	the	transport	layer	for	FaceBook Apps	&	a	serious	platform	for	
IBM
IOS	libraries	are	mature,	Android	not	so	much.
MQTT	is	now	at	Version	5	(our	winter	2020	work)
Implemented	Version	3.11,	we	even	found	a	bug	in	the	spec!	
*Specs	are	50ish	pages,	other	protocols	>	100	pages.

MQTT	– Various	Smalltalk	Projects about
Took	Tim	Rowledge’s MQTT	client for	Scratch	on	the	PI.	

http://www.squeaksource.com/MQTTClient.html
Various	fixes	fed	back	to	Tim

Need	Data	Broker	in	Smalltalk?	Why?	

A	commercial	broker	would	invoke	customer	verification	&	validation	procedures.	

But	we	can	add	a	MQTT	data	broker	to	a	VSE	image	as	an	SLL!	 {Software	upgrade}

Set	out	to	refactor	a	client	&	create	a	data	broker	solution	in	pure	Smalltalk.

Extra	make	a	platform	MQTT	client	in	Scarlet	SmallTalk/swift/java

Pharo version	at	https://github.com/LabWare/MQTT-broker MIT	License	

MQTT- Simple? Oh	sure	a	month	or	four…
Yes,	the	standard	is	simple?	Just	grind	thru	the	specs…

# MQTT	Broker/Client	Standard	and	our	solution	&	work	notes
[MQTT-1.5.3-1] The	character	data	in	a	UTF-8	encoded	string	MUST	be	well-formed	UTF-8	as	defined	by	the	Unicode	specification	[Unicode]	and	restated	in	RFC	3629	

[RFC3629].	In	particular	this	data	MUST	NOT	include	encodings	of	code	points	between	U+D800	and	U+DFFF.	If	a	Server	or	Client receives	a	Control	
Packet	containing	ill-formed	UTF-8	it	MUST	close	the	Network	Connection.

[MQTT-1.5.3-2] check	for	subscribe,	unsubscribe	topic	A	UTF-8	encoded	string	MUST	NOT	include	an	encoding	of	the	null	character	U+0000.	If	a	receiver	(Server	or	
Client)	receives	a	Control	Packet	containing	U+0000	it	MUST	close	the	Network	Connection.

[MQTT-1.5.3-3] A	UTF-8	encoded	sequence	0xEF	0xBB	0xBF	is	always	to	be	interpreted	to	mean	U+FEFF	("ZERO	WIDTH	NO-BREAK	SPACE")	wherever	it	appears	in	a	string	
and	MUST	NOT	be	skipped	over	or	stripped	off	by	a	packet	receiver.

[MQTT-2.2.2-1] Where	a	flag	bit	is	marked	as	“Reserved”	in	Table	2.2	- Flag	Bits,	it	is	reserved	for	future	use	and	MUST	be	set	to	the	value	listed	in	that	table.
[MQTT-2.2.2-2] If	invalid	flags	are	received,	the	receiver	MUST	close	the	Network	Connection.
[MQTT-2.3.1-1] MQTTTransportLayer>>newPackID SUBSCRIBE,	UNSUBSCRIBE,	and	PUBLISH	(in	cases	where	QoS	>	0)	Control	Packets	MUST	contain	a	non-zero	16-bit	

Packet	Identifier.
[MQTT-2.3.1-2] MQTTTransportLayer>>badPacketID & newPacketID Each	time	a	Client	sends	a	new	packet	of	one	of	these	types	it	MUST	assign	it	a	currently	unused	

Packet	Identifier.
[MQTT-2.3.1-3] MQTTPacketPublish>>acknowledgement,	MQTTPendingPubCompJob>>resendFor:ifNeededAtTime:	MQTTPacketPubRel>>acknowledgement,	

MQTTTransportlayerServer>>handleSubscribePacket: If	a	Client	re-sends	a	particular	Control	Packet,	then	it	MUST	use	the	same	Packet	Identifier	in	
subsequent	re-sends	of	that	packet.	The	Packet	Identifier	becomes	available	for	reuse	after	the	Client	has	processed	the	corresponding	
acknowledgement	packet.	In	the	case	of	a	QoS 1	PUBLISH	this	is	the	corresponding	PUBACK;	in	the	case	of	QO2	it	is	PUBCOMP.	For	SUBSCRIBE	or	
UNSUBSCRIBE	it	is	the	corresponding	SUBACK	or	UNSUBACK.

[MQTT-2.3.1-4] MQTTTransportLayerServer>>handlePublishResponse: The	same	conditions	[MQTT-2.3.1-3]	apply	to	a	Server	when	it	sends	a	PUBLISH	with	QoS	>0.

MQTT	– Testing
IBM	MQTT	compliance	test	scripts,	plus	tests	via	other	vendors.	
Need	more	test	data,	sure what	if	we	do	24	GB	a	day	of	data.	
https://test.mosquitto.org
Subscribe	to	wild	card	topic	*,	broadcast	thru	our	system,	back	
to	a	Linux	command	line	client	or	three… Run	for	weekend,	
anything	explode?	
Oh	say	that	looks	that	like	personal	data?	Some	people	have	no	
problem	making	public	test	server	“their”	production	server.

Work	work	- March	2018	–>	March	2019
Subscribe	and	Publish	seem	simple	which	makes	MQTT	a	1	to	
many	abstraction,	but	we	needed	a	simplified	1	to	1	relationship	
to	hide	the	complexity	from	internal	engineers	as	most	
communications	is	an	entrenched	mind	set	of	client/server.

Our	solution	is	something	we	called	an

Endpoint.

Endpoint	- Hiding	complexity
Datum	+	tag	+	target.			Datum	is	opaque,	tag	is	meta-data.
Based	on	this	we	create	a	Topic	somewhat	like:	
{Session	ID}	/	{target	EP	}	/	{receiver	EP}	/	{Command}	/	{EP	Service}	/	{Tag}	/	{promise	ID}

vPrivate	to	user	492	{Session	ID}

vTargeting	a	particular	target	Endpoint			->	(Mobile)	device.

vMobile	device	looks	up	Endpoint	service	executes	the	Tag	and	Datum	against	it.	

vResponse	if	asked	for	will	be	returned	to	{	Receiver	Endpoint}

Endpoint	-Send
Three	different	options:

>>send:	aByteArray tag:	aTagString
“Async send,	no	response,	or	receiveError”

>>sendSync:	aByteArray tag:	aTagString
“Sync	send,	will	get	response	or	error	data”

>>sendAsyncResponse:	aByteArray tag:	aTagString
“Response	via	receiveMessage or	possible	receiveError”	

Endpoint	target	identifier	is	defaulted	as	a	peer	to	peer,	but	can	override.	

Need	to	exploit	a	Promise	class	to	do	the	right	thing	for	sendSync:

Endpoint	- Receive

>>receiveMessage:	byteArray tag:	tag
“incoming	message	what	should	the	tag	do	with	the	aByteArray data?

tag	==	‘hello’	ifTrue:	[…].
^ByteArray new		“default	response”

Note:		Any	exception	thrown	is	bundled	up	as	a	stack	trace	and	returned	to	the	
other	Endpoint	where	it	would	trigger	the	Error	handler	logic	via	the:

>>receiveError:	aByteArray tag:	aTagString

Promise	– Device	&	JavaScript	Hassles
1. Halt	the	JavaScript	thread.

2. Get	data	on	the	MQTT	network	thread.	

3. Signal	the	JavaScript	thread?

4. Resume	the	JavaScript	thread.	

Sounds	Simple?		
No:	A	painful	month	of	self	doubt	&	failures

*	No	the	JavaScript	promise	logic	did	not	solve	this	issue	for	us.

Promise	– Device	&	JavaScript	Hassles
Solution:	Share	the	promise	logic	between	JavaScript	&	platform.

1. Stop	the	JavaScript	thread	via	platform	semaphore

2. Examine	incoming	MQTT	publish	msgs for	Promise	fulfillment

3. Fulfil	the	promise	on	the	platform	side.

4. Signal	the	platform	semaphore	(or	timeout)

JavaScript	code	then	does	promise	value	on	the	JS	side,	getting	the	results	from	
the	platform	side.		In	this	case	we	either	have	data	or	an	error	{possible	walk	
back	stack}

Promise>>waitForMs:	milliseconds
"wait	for	results,	timeout	or	resolve	with	results"
hasValue ifTrue:[^value].
self	resolveWith:	(self	primWaitForTimeOut:	milliseconds).
^value

Promise>>	primWaitForTimeOut:	timeOut
<primitive:	'primWaitForTimeOut'	module:	'NKPromise'>
"value	or	nil(timeout)"
self	primitiveFailed

Scarlet	Smalltalk	code	for	Promise

It’s	just	a	primitive	call.		Note	the	
standard	failure	code	

‘self	primitiveFailed’

NKPromiseModule.primWaitForTimeOut=	function(receiver,	args)	{
var timeOut =	args[0].valueOf();
var handler	=	receiver["@@nativeClient"];
if	(typeof handler	==	"object"	&&	typeof timeOut ==	"number")	{
var returnValue =	handler.waitForTimeOut(timeOut);	//return	an	Array
if	(typeof returnValue ===	"undefined")

return	this.primFailValue;

for	(var i=0;	i<returnValue.length;	i++)	{
if	(returnValue[i].constructor	==	Uint8Array)	{

returnValue[i]	=	smalltalk.ByteArray.contents_(returnValue[i]);
}

}
return	returnValue;

}
return	this.primFailValue;

}

Scarlet	Smalltalk	JavaScript	Primitive	
for	NKPromise

@@nativeHandler is	a	instance	var on	
receiver	that	points	to	the	Swift	Object	
reference.	Swift	obj can	point	to	
JavaScript	object,	JavaScript	obj can	
point	to	Swift	object.	See MVVM

On	return	check	for	nil,	then	check	to	
see	if	we	have	to	take	a	JavaScript	
Uint8Array	object	and	create	a	
Smalltalk	ByteArray object.	

ByteArray contents:	aUint8Array	

@objc protocol	NKPromiseExport:	JSExport {
func waitForTimeOut(_	timeOut:	Int)	->	[Any]?

}

@objc class	NKPromise:	NSObject,	NKPromiseExport {
let	waitSemaphore =	DispatchSemaphore(value:	0)
var rawDatum:	[Any?]	=	[]

func resolveWith(_	data:	[Any?])	{	//MQTT	logic	or	other	will	resolve	promise	with	data
self.rawDatum =	data
self.signal()

}

func waitForTimeOut(_	timeOut:	Int)	->	[Any]?	{
let	valid	=	self.waitSemaphore.wait(timeout:	timeOut)
if	valid	==	.timedOut {
return	nil

}
return	returnDatum()		//Could	return	ByteArray contents:	here,	but	do	in	JavaScript	caller

}

IOS	Swift	code	for	NKPromise

Nasty	bits:	Allocating	memory	for	
JavaScript	Objects	can	only	be	
done	on	JavaScript	Thread,	not	
this	MQTT	network	worker	
thread.	Many	threads	on	the	go.

Other	complication	is	that:	
Who	does	the	garbage	collection	
work,	Swift	or	JS?	Maybe	10MB	
here?	Try	not	to	copy	it… iOS	
Easy,	Android	complicated.	We	
forked	Apple’s	JavaScript	Core	
engine	for	Android	to	better	
address	the	issue.

Endpoint>>sendSync:	aByteArray from:	anEndpoint tag:	aTagString
receivingManager:	receivingManager onError:	exceptionBlock timeOut:	aTimeOutInSeconds

self	rememberPromise:	(Promise	withIdentifier:	self	nextTransactionNumber).
estimatedTimeOut :=	… "Estimate	time	need	to	transmit	data	based	on	3G	average	cost	plus	20%"

[|	topic	|
topic	:=	MQTTTopic targetManager:	self	remoteIdentifier ….
self	publish:	aByteArray onTopic:	topic]	on:	Error	do:	[exceptionBlock].

“Promise	waits	only	N	ms,	then	raises	an	error”
datum	:=	ourPromise waitForMs:	estimatedTimeOut onTimeOut:	[….]
metaData :=	MQTTTopic decodeTopic:	datum.
metaData responseType ==	#error
ifTrue:[^EndpointError signal:	metaData returnedBytes asString].	

^ metaData returnedBytes

Endpoint>>executeBlock
^[:t	:m	:q	|
metaData :=	MQTTTopic fromString:	t.
receivingManager :=	metaData receivingManager.
hasError :=	false.
[myEP :=	self	endpointAtRole:	myRole partner:	myPartner.
results	:=	myEP perform:	metaData selector		with:	m	with:	tag]]	on:	Error	

do:	[:ex	|	“Error,	return	error	stack”
publishTopic :=	MQTTTopic targetManager:	…
self	publish:	ex	description	onTopic:	publishTopic.
hasError :=	true.
ex	return:	nil].			//Scarlet	SmallTalk issue	returning	an	exception	value	does	not	work

(hasError not	and:	[transportType ~=	#async]	and:	[messageType ==	#execute])
ifTrue:[|	publishTopic|.
publishTopic :=	MQTTTopic targetManager:	… “valid	async return	value	needed”
self	publish:	results	onTopic:	publishTopic].

transportType ==	#sync
ifTrue:[[self	executeSyncBlock value:	tSession value:	m	value:	q]	on:Error […]]

Platform	code	to	JavaScript	to	find	this	block	to	execute.	
Earlier	did	subscribe:	topic	do:	[Block]

Endpoint	– Non	Obvious	things
v LIMS	SaaS	user	can	print	to	Bluetooth	or	TCP/IP	printer	that	is	visible	to	device,	
but	not	to	the	SaaS	server.	{a	channel	thru	customer	firewall}

vLIMS	Server	can	ask	a	dedicated	device	(LIMS	Appliance)	to	poll	for	file	system
(NFS)	data,	then	supply	the	data	to	the	LIMS	server.	{a	channel	thru	customer	firewall}

vDevice	can	talk	to	another	device	directly	via	the	broker.

vMQTT	Data	Broker	ping/pong	helps	take	down	zombie	sessions.

vMQTT	reconnect	helps	with	iffy	cellular	data	connectivity.

vMQTT	guaranteed	message	delivery	can	solve	2	phase	commit	issues.	Hard	Concept

Endpoint	– 1	to	1	communications

MQTT
Smalltalk
Broker

Lims Mobile
Server

User	492

Mobile
User	492WSS

DMZ

Lims Desktop
User 492

Standalone	
or	as	SaaS

Lims SaaS
Server

User	492

Lims SaaS
User 492

WSS<->MQTT

internet client

Future

