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• 10 years of experience in industrial 
applications


• PhD in Dynamic Software Update

• Interested in improving 

development tools and the daily 
development process. 


• Enthusiast of the object oriented 
programming and their tools. 

• Experience industrial on service-
oriented and mobile applications.


• PhD in Computer Science

• Main research interests are 

modularity and development tools.

• In the Pharo community since 2010

• More noticeable contributions: 

Pharo Bootstrap process and 
Iceberg.



FFI? Foreign Function Interface

Image

VM

External LibrariesFFI

We can communicate with anything that 
has a C API

Operating System API
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Unified FFI in a nutshell

UFFI handles:  
- Look-up of functions 
- Marshalling of arguments 
- Execution 
- Marshalling of the return values



Concurrency in Pharo
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Concurrency in Pharo
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Concurrency in Pharo
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Concurrency in Pharo
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Conceptual Non-Blocking FFI
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Strategy #1: Thread per Call-out
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Strategy #1: Thread per Call-out
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Interpreter 
Thread

p1
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p1

p2

Thread 1

<<Spawn>>

<<Signal Semaphore>>

int function(char* foo, int bar)

P1 P2

• Simple

• Expensive to spawn threads 
• Calls are not in the same thread 
• Cannot reuse existing threads (e.g., UI threads)



Not all libraries are 
designed equally

• Different requirements


• Must run in the main thread (Cocoa)


• Must run in a single thread (Gtk+3)


• Runs on any thread but not concurrent (libgit, sqlite)


• Is a Thread-safe Library


• ….

!12



We need different 
Strategies to choose from
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We need to choose different 
strategies for each library



Strategy #2: Worker Threads
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Strategy #2: Worker Threads
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Interpreter 
Thread
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Worker #1

<<Enqueue>>

Call out Queue
of Worker #1

<<Signal Semaphore>>

int function(char* foo, int bar)

P1 P2

• Simple 
• Group related calls 
• No thread spawn overhead

• Expensive Callouts (synchronising queue) 
• Do not support main thread!



Strategy #3: VM Thread Runner
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Strategy #3: VM Thread Runner
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• Simpler 
• Group related calls 
• No thread spawn overhead 
• Backward compatibility

• Blocking



Strategy #4: Main Thread Runner
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Strategy #4: Main Thread Runner
Interpreter 

Thread
p1

p2

p1

p2

Worker #1

<<Enqueue>>

Call out Queue
of Worker #1

<<Signal Semaphore>>

int function(char* foo, int bar)

P1 P2
• Simple 
• Group related calls 
• No thread spawn overhead 
• Supports main thread

• Expensive Callouts (synchronising queue) 
• VM should be run in separate thread



Strategy #5: Global Interpreter Lock

int function(char* foo, int bar)

P1 P2 Interpreter 
#1

Interpreter 
#2
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Strategy #5: Global Interpreter Lock

int function(char* foo, int bar)

P1 P2 Interpreter 
#1

Interpreter 
#2
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• Group related calls 
• No thread spawn overhead

• No Backward compatibility 
• Application should be written with threading 

in mind 
• Requires VM modification



Strategy #6: Thread-safe interpreters

int function(char* foo, int bar)
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Strategy #6: Thread-safe interpreters

int function(char* foo, int bar)
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P1 P2
Interpreter 

#1
Interpreter 

#2

• Does not exist for Pharo 
• Requires extensive modification of VM, 

Plugins and Image core libraries 
• Application should be written with threading 

in mind

• Real multithreading not only for FFI



Implementations
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Strategy #4: Main Thread Runner

Future???

Strategy #6: Thread-safe  
interpreters



Implementations
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Queue Based FFI 
(Pharo Threaded FFI Plugin)

GILda VM 
(Global Interpreter Lock VM)

Strategy #1: Thread per Call-out
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Strategy #3: VM Thread Runner
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Strategy #4: Main Thread Runner

Future???

Strategy #6: Thread-safe  
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Transparency through 
UFFI
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Your Program

Unified FFI

Pharo Threaded FFI

Pharo Threaded FFI Plugin

S#1 S#2 S#3 S#4 

Squeak FFI

Squeak FFI 
Plugin

Library



Decision Table
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Same Thread Worker Threads

Long Calls

Blocking Parallel

Short Calls

Little Overhead Lots of Overhead

OPTIMIZATIONS



Implementations
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GILda VM 
(Global Interpreter Lock VM)

Strategy #5: Global Interpreter Lock

Queue Based FFI 
(Pharo Threaded FFI Plugin)

Strategy #1: Thread per Call-out

Strategy #2: Worker Threads

Strategy #3: VM Thread Runner

Strategy #4: Main Thread Runner

Future???

Strategy #6: Thread-safe  
interpreters

More Details 

IWST - Virtual Machines Session 

Thursday 11:00 am



Start Using It!
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   Metacello new
      baseline: ‘ThreadedFFI'
      repository: 
          ‘github://pharo-project/threadedFFI-Plugin/src';
      load

pharo-project/threadedFFI-Plugin

Only in Pharo 8 + Headless VM



Conclusion
• Beta Version (In usage for Gtk+)


• Transparent for the user


• Strategies selected in the Image


• Uses LibFFI


• Re-entrant Callback support


• Tests!
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Preliminar results
• All marshalling image side + Lib FFI


• Short call


• Same thread 27 us


• Single worker thread 6791 us


• 2 Parallel long Calls (1 second per call)


• Same Thread 2001.9 ms


• Different working threads 1006.4ms


