
Non-Blocking Strategies for FFI
Don’t Block me Now!

Pablo Tesone
Pharo Consortium Engineer

�1

Guille Polito
CNRS UMR9189

CRIStAL, Inria

RMoD

Pablo Tesone
Pharo Consortium

Engineer

Guille Polito
CNRS Engineer

RMod Team

• 10 years of experience in industrial
applications

• PhD in Dynamic Software Update

• Interested in improving

development tools and the daily
development process.

• Enthusiast of the object oriented
programming and their tools.

• Experience industrial on service-
oriented and mobile applications.

• PhD in Computer Science

• Main research interests are

modularity and development tools.

• In the Pharo community since 2010

• More noticeable contributions:

Pharo Bootstrap process and
Iceberg.

FFI? Foreign Function Interface

Image

VM

External LibrariesFFI

We can communicate with anything that
has a C API

Operating System API

!3

Unified FFI in a nutshell

UFFI handles:
- Look-up of functions
- Marshalling of arguments
- Execution
- Marshalling of the return values

Concurrency in Pharo

!5

P1 P2 P3 Interpreter
Thread

p1

p3

p1

p2

p2

VM Thread

Concurrency in Pharo

!6

P1 P2 P3 Interpreter
Thread

p1

p3

p1

p2

p2
VM

handles
process

scheduling

VM Thread

Concurrency in Pharo

!7

P1 P2 P3 Interpreter
Thread

p1

p3

p1

p2

p2

p1

int function(char* foo, int bar)

VM Thread

Concurrency in Pharo

!8

P1 P2 P3 Interpreter
Thread

p1

p3

p1

p2

p2

p1

Out
of

VM

VM
loses

control

int function(char* foo, int bar)

VM Thread

Conceptual Non-Blocking FFI

!9

P1 P2 P3
Interpreter

Thread
p1

p3

p1

p2

p2

p1

p3

p2

?

int function(char* foo, int bar)

VM Thread

Strategy #1: Thread per Call-out

!10

Interpreter
Thread

p1

p2

p1

p2

Thread 1

<<Spawn>>

<<Signal Semaphore>>

int function(char* foo, int bar)

P1 P2 VM Thread

Strategy #1: Thread per Call-out

!11

Interpreter
Thread

p1

p2

p1

p2

Thread 1

<<Spawn>>

<<Signal Semaphore>>

int function(char* foo, int bar)

P1 P2

• Simple

• Expensive to spawn threads
• Calls are not in the same thread
• Cannot reuse existing threads (e.g., UI threads)

Not all libraries are
designed equally

• Different requirements

• Must run in the main thread (Cocoa)

• Must run in a single thread (Gtk+3)

• Runs on any thread but not concurrent (libgit, sqlite)

• Is a Thread-safe Library

• ….

!12

We need different
Strategies to choose from

!13

We need to choose different
strategies for each library

Strategy #2: Worker Threads

!14

Interpreter
Thread

p1

p2

p1

p2

Worker #1

<<Enqueue>>

Call out Queue
of Worker #1

<<Signal Semaphore>>

int function(char* foo, int bar)

P1 P2 VM Thread

Strategy #2: Worker Threads

!15

Interpreter
Thread

p1

p2

p1

p2

Worker #1

<<Enqueue>>

Call out Queue
of Worker #1

<<Signal Semaphore>>

int function(char* foo, int bar)

P1 P2

• Simple
• Group related calls
• No thread spawn overhead

• Expensive Callouts (synchronising queue)
• Do not support main thread!

Strategy #3: VM Thread Runner

!16

P1 P2 P3 Interpreter
Thread

p1

p3

p1

p2

p2

int function(char* foo, int bar)

p1

VM Thread

Strategy #3: VM Thread Runner

!17

P1 P2 P3 Interpreter
Thread

p1

p3

p1

p2

p2

int function(char* foo, int bar)

p1

• Simpler
• Group related calls
• No thread spawn overhead
• Backward compatibility

• Blocking

Strategy #4: Main Thread Runner
Interpreter

Thread
p1

p2

p1

p2

Worker #1

<<Enqueue>>

Call out Queue
of Worker #1

<<Signal Semaphore>>

int function(char* foo, int bar)

P1 P2 VM Thread

Strategy #4: Main Thread Runner
Interpreter

Thread
p1

p2

p1

p2

Worker #1

<<Enqueue>>

Call out Queue
of Worker #1

<<Signal Semaphore>>

int function(char* foo, int bar)

P1 P2
• Simple
• Group related calls
• No thread spawn overhead
• Supports main thread

• Expensive Callouts (synchronising queue)
• VM should be run in separate thread

Strategy #5: Global Interpreter Lock

int function(char* foo, int bar)

P1 P2 Interpreter
#1

Interpreter
#2

!20

VM Thread #1 VM Thread #2

Strategy #5: Global Interpreter Lock

int function(char* foo, int bar)

P1 P2 Interpreter
#1

Interpreter
#2

!21

• Group related calls
• No thread spawn overhead

• No Backward compatibility
• Application should be written with threading

in mind
• Requires VM modification

Strategy #6: Thread-safe interpreters

int function(char* foo, int bar)

!22

P1 P2
Interpreter

#1
Interpreter

#2
VM Thread #1 VM Thread #2

Strategy #6: Thread-safe interpreters

int function(char* foo, int bar)

!23

P1 P2
Interpreter

#1
Interpreter

#2

• Does not exist for Pharo
• Requires extensive modification of VM,

Plugins and Image core libraries
• Application should be written with threading

in mind

• Real multithreading not only for FFI

Implementations

!24

Queue Based FFI
(Pharo Threaded FFI Plugin)

GILda VM
(Global Interpreter Lock VM)

Strategy #1: Thread per Call-out

Strategy #2: Worker Threads

Strategy #3: VM Thread Runner

Strategy #5: Global Interpreter Lock

Strategy #4: Main Thread Runner

Future???

Strategy #6: Thread-safe
interpreters

Implementations

!25

Queue Based FFI
(Pharo Threaded FFI Plugin)

GILda VM
(Global Interpreter Lock VM)

Strategy #1: Thread per Call-out

Strategy #2: Worker Threads

Strategy #3: VM Thread Runner

Strategy #5: Global Interpreter Lock

Strategy #4: Main Thread Runner

Future???

Strategy #6: Thread-safe
interpreters

Transparency through
UFFI

!26

Your Program

Unified FFI

Pharo Threaded FFI

Pharo Threaded FFI Plugin

S#1 S#2 S#3 S#4

Squeak FFI

Squeak FFI
Plugin

Library

Decision Table

!27

Same Thread Worker Threads

Long Calls

Blocking Parallel

Short Calls

Little Overhead Lots of Overhead

OPTIMIZATIONS

Implementations

!28

GILda VM
(Global Interpreter Lock VM)

Strategy #5: Global Interpreter Lock

Queue Based FFI
(Pharo Threaded FFI Plugin)

Strategy #1: Thread per Call-out

Strategy #2: Worker Threads

Strategy #3: VM Thread Runner

Strategy #4: Main Thread Runner

Future???

Strategy #6: Thread-safe
interpreters

More Details

IWST - Virtual Machines Session

Thursday 11:00 am

Start Using It!

!29

 Metacello new
 baseline: ‘ThreadedFFI'
 repository:
 ‘github://pharo-project/threadedFFI-Plugin/src';
 load

pharo-project/threadedFFI-Plugin

Only in Pharo 8 + Headless VM

Conclusion
• Beta Version (In usage for Gtk+)

• Transparent for the user

• Strategies selected in the Image

• Uses LibFFI

• Re-entrant Callback support

• Tests!

!30

Preliminar results
• All marshalling image side + Lib FFI

• Short call

• Same thread 27 us

• Single worker thread 6791 us

• 2 Parallel long Calls (1 second per call)

• Same Thread 2001.9 ms

• Different working threads 1006.4ms

