
UI Testing with Spec
The future is here… hace rato!

Pablo Tesone
Pharo Consortium Engineer

�1

Who I am!

Pablo Tesone
Pharo Consortium

Engineer
• 20 years trying to code

• 10 years of experience in industrial

applications

• PhD in Dynamic Software Update

• Interested in improving development tools

and the daily development process.

• Enthusiast of the object oriented

programming and their tools.

Also, playing with me:

Guille Polito
CNRS Engineer

RMod Team

Esteban Lorenzano
Pharo Consortium

Engineer

!2

If it has no tests…
it does not exist.

Dr. Test (1987 - …)

!3

A little strong… but…

Missing Tests

Fear of Changes

Unknown Impact

Bad Surprises

Pain… lots of pain…

!4

Really…
If I delete something or break it…

How long it will take to detect the
error?

We all
love

tests.

That
is eas

y

!5

We need to test the UI

Testing UI is difficult
We need special tools

Selenium,
Watir,

Cypress,
or Cucumber

with just Objects & Polymorphism

Es al pedo! j'ai la flemme!

!6

2 similar but different
problems.

• Testing Spec implementation itself (Adapters,
Presenters, Widgets, Layouts, Backends, etc)

• Testing Applications written in Spec (display,
interactions, update, navigations)

Befor
e

Refacto
ring…

 we

need
 tests

!

!7

Testing Spec

• Spec has a nice modular implementation, different
objects with different responsibilities

Presenters AdaptersLayouts Widgets

• Spec is a big monster, maybe not so big… but
scary… maybe not so scary:

!8

Testing Spec
Presenters

• Interaction with the Model

• Events

• Public API

• Default Values

Adapters

Lots o
f

Small te
sts!!

Layouts

Widgets

• Interaction Presenters / Widget

• Creating Widgets

• Events

• Same Behaviour in each backend

• Backend API

• Widgets themselves

• Events

• How to create widgets

• Where to put them

Stop Complaining,
there are not so

many.

!9

Common Scenarios

Different Backends

GTK

Morphic

Other

When
Test

Is
Executed

Before Opening

After Opening

Modify
Presenter

Open
Widget Asserts

Modify
Presenter

Open
Widget Asserts

We want it

for a
ll tes

ts

!10

Testing List Adapter: When I select something in the presenter it
is propagated to the widget

Only 1 Simple
Test Case

Simple /
Multiple

Selection

With / Without
Columns

Widget
Created / Not

Created

Gtk / Morphic

All th
is for

 13

differe
nt

select
ion

scena
rios

Only
List a

nd

Select
ion:

208 Tests

testSelectPresenterIndexSetsSelectedIndexInWidget
 presenter selectIndex: 1.
 self assert: (self widget selectedIndexes includes: 1)

!11

Proposed Solution: Coding
Monkeys

Just K
idding,

we are
 lazy

…

you s
hould

 be

lazy
also.

!12

Implementing it with “Style”

Parametrized
Tests

Generates
when you run

the suite.

A Test
Instance for

each
combination of

parameters

Matrix of
Parameters

!13

Our Matrix
AbstractAdapterTest class >> #testParameters

	 ^ ParametrizedTestMatrix new

	 	

forSelector: #specInitializationStrategy

	 	 	 addOptions: { [SpecOpenStrategy openBefore].

[SpecOpenStrategy openAfter] };

	 	

forSelector: #backendForTest

	 	 	 addOptions: AbstractBackendForTest allSubclasses;

	 	

yourself

When

Backend

!14

We want simple tests!

testSelectItemSelectsTheGivenElement

	 self presenter selection selectedPath: #(2).

	 self assert: self adapter selectedItem equals: 2.

testSettingAnImageSetsTheImage

	 self presenter image: self imageForm.

	 backendForTest assertImage: self adapter image equals: self imageForm.

!15

Something else required…

• Putting in the test backend backend depending code

• Adding Testing methods to the adapters & presenters

Example:
Asserting if two images are the same

#assertImage:equalsForm:

Clicking / Selecting of a widget / etc.

Example:
- Emulating Events.

- Getting State

- Accessing real widget Common AP

I for
 all

backe
nds

!16

Results

• Lots of Tests: 1400+ and growing

• Easy To develop new ones / Easy to maintain.

• Validation of Public API

• Validation of Backend API => Easy to implement new
Backends.

!17

Second Problem: Testing
Applications

• Easy, let’s create Tests.

• In Spec we believe, let’s test the application

Maybe
Spec

has p
roble

ms.

But le
t’s cre

ate te
sts

where
they

shoul
d be.

!18

Example Application
Phonebook

name
company
mail
telephone

PhoneEntry

*

Phonebook
Entry

Presenter

Phonebook
Presenter

initializePresenters
	 entriesList := self newList

	 whenSelectionChangedDo: [:sel |

	 	 	 detailsPanel model: sel selectedItem.

	 	 	 removeButton enabled: sel isEmpty not];

 yourself.

	 addButton := self newButton

	 	 label: 'Add';

	 	 yourself.

	 removeButton := self newButton

	 	 label: 'Remove';

	 	 action: [self removeEntry]

	 	 yourself.

	 detailsPanel := self

instantiate: PhonebookEntryPresenter

on: nil.
 Details panel

Buttons

List

pharo-spec/phonebook-example!19

Testing Widgets
• Testing that a widget is shown

testWindowHasAddButton

	 self assert: (window hasPresenter:

 presenter addButton)

testAddButtonHasLabel

	 self assert: presenter addButton label equals: 'Add'

• Testing that a widget is correctly initialised

Seems stup
id, but

we

can t
est i1

8N her
e!

!20

Testing UI State Update
• Selecting an element update the UI

testSelectingAnElementEnablesRemoveButton

	 presenter entriesList selectIndex: 1.

	 self assert: presenter removeButton isEnabled

testSelectingAnElementUpdatesDetailName

	 presenter entriesList selectIndex: 1.

	 self assert: presenter detailsPanel nameLabel label equals: 'A Person'.

!21

Testing UI Interactions
• Clicking in Remove

testClickingRemoveButtonRemovesAnElementFromTheList

	 presenter entriesList selectIndex: 1.

	 presenter removeButton click.

	 self assert: presenter entriesList items size equals: 0

testClickingRemoveButtonRemovesDisablesRemoveButton

	 presenter entriesList selectIndex: 1.

	 presenter removeButton click.

	 self deny: presenter removeButton isEnabled

!22

Testing UI Layout
testAddButtonIsBelowEntryList

self assert: (presenter addButton

 isBelowOf: presenter entriesList)

testAddButtonIsLeftOfRemoveButton

self assert: (presenter addButton

 isLeftOf: presenter removeButton)

Also
we are

 able
 to

test d
ynam

ic thi
ngs!

!23

Testing UI Navigation

• Testing Navigation

testClickingAddButtonOpenANewWindow

	 presenter addButton click.

	 self assert: presenter application windows size equals: 2

testClickingAddButtonOpenCorrectWindow

	 presenter addButton click.

	 self

 assert: presenter application focusedPresenter class

 equals: PhonebookAddEntryPresenter

Once
open…

 it is

respo
nsibil

ity of
 othe

r

test t
o tes

t it

!24

Testing UI

• Spec Applications are easily testable.

• Centring on relation between our presenters.

• Spec provides methods for testing.

!25

Thanks!
• Adding Testing infrastructure to Spec2.

• Testing implementation and backends.

• Expressing the contracts with backend as
tests.

• Open to new backend implementations.

• Support for Application Testing.

• Writing UI Tests as another easy test.

Now… withou
t

excus
es.

May th
e test

s be

with yo
u!

pharo-spec/phonebook-example

!26

