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Who I am!

Pablo Tesone
Pharo Consortium 

Engineer
• 20 years trying to code

• 10 years of experience in industrial 

applications

• PhD in Dynamic Software Update

• Interested in improving development tools 

and the daily development process. 

• Enthusiast of the object oriented 

programming and their tools. 

Also, playing with me:

Guille Polito
CNRS Engineer


RMod Team

Esteban Lorenzano
Pharo Consortium 

Engineer
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If it has no tests…  
it does not exist.

Dr. Test (1987 - …)
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A little strong… but…

Missing Tests

Fear of Changes

Unknown Impact

Bad Surprises

Pain… lots of pain…
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Really…  
If I delete something or break it…  

How long it will take to detect the 
error?

We all 
love 

tests.
  

That 
is eas

y
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We need to test the UI

Testing UI is difficult
We need special tools

Selenium, 
Watir, 

Cypress, 
or Cucumber

with just Objects & Polymorphism

Es al pedo! j'ai la flemme!
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2 similar but different 
problems.

• Testing Spec implementation itself (Adapters, 
Presenters, Widgets, Layouts, Backends, etc)


• Testing Applications written in Spec (display, 
interactions, update, navigations)

Befor
e 

Refacto
ring…

 we 

need
 tests

!
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Testing Spec

• Spec has a nice modular implementation, different 
objects with different responsibilities

Presenters AdaptersLayouts Widgets

• Spec is a big monster, maybe not so big… but 
scary… maybe not so scary:
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Testing Spec
Presenters

• Interaction with the Model

• Events

• Public API

• Default Values

Adapters

Lots o
f 

Small te
sts!!

Layouts

Widgets

• Interaction Presenters / Widget

• Creating Widgets

• Events

• Same Behaviour in each backend

• Backend API

• Widgets themselves

• Events

• How to create widgets

• Where to put them

Stop Complaining, 
there are not so 

many.
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Common Scenarios

Different Backends

GTK

Morphic

Other

When  
Test  

Is 
Executed

Before Opening

After Opening

Modify 
Presenter

Open 
Widget Asserts

Modify 
Presenter

Open 
Widget Asserts

We want it
 

for a
ll tes

ts
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Testing List Adapter: When I select something in the presenter it 
is propagated to the widget

Only 1 Simple 
Test Case

Simple / 
Multiple 

Selection

With / Without 
Columns

Widget 
Created  / Not 

Created

Gtk / Morphic

All th
is for

 13 

differe
nt 

select
ion 

scena
rios

Only 
List a

nd 

Select
ion: 

208 Tests
 

testSelectPresenterIndexSetsSelectedIndexInWidget 
 presenter selectIndex: 1. 
 self assert: (self widget selectedIndexes includes: 1)
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Proposed Solution: Coding 
Monkeys

Just K
idding, 

we are
 lazy

… 

you s
hould

 be 

lazy 
also.
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Implementing it with “Style”

Parametrized 
Tests

Generates 
when you run 

the suite.

A Test 
Instance for 

each 
combination of 

parameters

Matrix of 
Parameters
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Our Matrix
AbstractAdapterTest class >> #testParameters 


	 ^ ParametrizedTestMatrix new

	 	 


forSelector: #specInitializationStrategy

	 	 	 addOptions: { [ SpecOpenStrategy openBefore ]. 


[ SpecOpenStrategy openAfter ] };

	 	 


forSelector: #backendForTest

	 	 	 addOptions: AbstractBackendForTest allSubclasses;

	 	 


yourself

When

Backend
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We want simple tests!

testSelectItemSelectsTheGivenElement 

	 self presenter selection selectedPath: #(2).

	 self assert: self adapter selectedItem equals: 2.

testSettingAnImageSetsTheImage 

	 self presenter image: self imageForm.

	 backendForTest assertImage: self adapter image equals: self imageForm.
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Something else required…

• Putting in the test backend backend depending code


• Adding Testing methods to the adapters & presenters

Example:  
Asserting if two images are the same


#assertImage:equalsForm: 

Clicking / Selecting of a widget / etc.

Example:  
- Emulating Events.

- Getting State

- Accessing real widget Common AP

I for
 all 

backe
nds
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Results

• Lots of Tests: 1400+ and growing


• Easy To develop new ones / Easy to maintain.


• Validation of Public API


• Validation of Backend API => Easy to implement new 
Backends.
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Second Problem: Testing 
Applications

• Easy, let’s create Tests.


• In Spec we believe, let’s test the application

Maybe 
Spec 

has p
roble

ms. 

But le
t’s cre

ate te
sts 

where 
they 

shoul
d be.
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Example Application
Phonebook

name 
company 
mail 
telephone

PhoneEntry

*

Phonebook 
Entry 

Presenter

Phonebook 
Presenter

initializePresenters 
	 entriesList := self newList


	      whenSelectionChangedDo: [ :sel | 

	 	 	 detailsPanel model: sel selectedItem.

	 	 	 removeButton enabled: sel isEmpty not ];

             yourself.


	 addButton := self newButton

	 	 label: 'Add';

	 	 yourself.

	 removeButton := self newButton

	 	 label: 'Remove';

	 	 action: [ self removeEntry ]

	 	 yourself.

	 detailsPanel := self 


instantiate: PhonebookEntryPresenter 

on: nil.
 Details panel 

Buttons

List

pharo-spec/phonebook-example!19



Testing Widgets
• Testing that a widget is shown

testWindowHasAddButton 

	 self assert: (window hasPresenter: 

                             presenter addButton)

testAddButtonHasLabel 

	 self assert: presenter addButton label equals: 'Add'

• Testing that a widget is correctly initialised

Seems stup
id, but 

we 

can t
est i1

8N her
e!
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Testing UI State Update
• Selecting an element update the UI

testSelectingAnElementEnablesRemoveButton 

	 presenter entriesList selectIndex: 1.

	 self assert: presenter removeButton isEnabled

testSelectingAnElementUpdatesDetailName 

	 presenter entriesList selectIndex: 1.

	 self assert: presenter detailsPanel nameLabel label equals: 'A Person'.
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Testing UI Interactions
• Clicking in Remove

testClickingRemoveButtonRemovesAnElementFromTheList 

	 presenter entriesList selectIndex: 1.

	 presenter removeButton click.


	 self assert: presenter entriesList items size equals: 0

testClickingRemoveButtonRemovesDisablesRemoveButton 

	 presenter entriesList selectIndex: 1.

	 presenter removeButton click.


	 self deny: presenter removeButton isEnabled
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Testing UI Layout
testAddButtonIsBelowEntryList 

self assert: (presenter addButton 

                 isBelowOf: presenter entriesList) 

testAddButtonIsLeftOfRemoveButton 

self assert: (presenter addButton 

                 isLeftOf: presenter removeButton) 

Also 
we are

 able
 to 

test d
ynam

ic thi
ngs!
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Testing UI Navigation

• Testing Navigation

testClickingAddButtonOpenANewWindow 

	 presenter addButton click.

	 self assert: presenter application windows size equals: 2

testClickingAddButtonOpenCorrectWindow 

	 presenter addButton click.

	 self 

              assert: presenter application focusedPresenter class 

              equals: PhonebookAddEntryPresenter

Once 
open…

 it is 

respo
nsibil

ity of
 othe

r 

test t
o tes

t it
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Testing UI

• Spec Applications are easily testable.


• Centring on relation between our presenters.


• Spec provides methods for testing. 
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Thanks!
• Adding Testing infrastructure to Spec2.


• Testing implementation and backends.


• Expressing the contracts with backend as 
tests.


• Open to new backend implementations.


• Support for Application Testing.


• Writing UI Tests as another easy test.

Now… withou
t 

excus
es.

May th
e test

s be 

with yo
u!

pharo-spec/phonebook-example
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