Live Typing
Automatic Type Annotation that improves
the Programming eXperience

Herndn A. Wilkinson - @hernanwilkinson
10Pines founder — Professor at UBA

@
10 Plnes agile software development & serv ices

Phar

x — 0O Nautilus - System Browser v
-~ DrTDD Recommendation
Stop Dr.TDD All tests are passing Write a failing test v Apply recommendation More information
Scoped Variables History Navigator Vea&nn
“, Pke1lAPke2|F w ! Developer =
i ! DrTDD
v [£1 DrTDD 1,
DITDD ! DrTDDMethodBrowser
Model ! DrTDDNautilusPlugin
Pharo ! DrTDDNautilusPluginicons
Pharo-Tests ! DrTDDNautilusPluginMorph
Pharo-Ul ! DrTDDPharoCommand
Tests ! CreateNewTestCaseCommand v
Tests-Sandbox v
~I : : : > A, Hier. c Class 7 Com.

Object subclass: #NameOfSubclass
instancevVariableNames: ''
classVariableNames: ''
package: 'DrTDD'

3/4[24] [] Formatasyouread W +L

“Wilklippy”

[Nautilus - System Browser

Live Typing
Automatic Type Annotation that improves
the Programming eXperience

Herndn A. Wilkinson - @hernanwilkinson
10Pines founder — Professor at UBA

@
10 Plnes agile software development & serv ices

|ls Smalltalk Cool??

10 Pines

YEAH!
Of Course!

10 Pines

10 Pines

Because it iIs Dynamically
Typed

10 Pines

Because it Is a Live
Environment

10 Pines

But ...

10 Pines

Looking for senders is done statically!!

we get more senders than the real ones
we need to manually filter them

10 Pines

Looking for implementors is done
statically!!

we get more implementors than the real ones
we need to manually filter them

10 Pines

Renaming a message is done statically!!

we get more senders and implementors than the real
ones
we need to manually filter them

10 Pines

Autocomplete in the browser is done
statically

we get don’t get the real messages an object
understands

10 Pines

and so on...

10 Pines

But Smalltalk is Cool!!

10 Pines

Because it iIs Dynamically
Typed

10 Pines

Because it Is a Live
Environment

10 Pines

But ...

10 Pines

How can we get rid of this “but”?
Aren’t you tired of these problems?

AN 10 Pines

I’'m tired of all those
problems
It's time to act!

10 Pines

What if we combine

Dynamically Typed
4

Live Environment

to get Automatic Type Annotation
and iImprove the tools with that
iINnfo? 10Pines

What is Live Typing?

10 Pines

Live Typing

Automatic type annotation (done by the VM)
+

Tools to improve the development experience

(Annotation happens while the system runs)

10 Pines

It IS not a new Idea...

10 Pines

Since 1986!

A Simple Technique for Handling Multiple Polymorphism

A

Daniel H. H. Ingalis
Mail Stop 22-Y
Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014

Abstract

Certain situations arise in programming that lead to multiply
polymorphic expressions, that is, expressions in which several
terms may each be of variable type. In such situations,
conventional object-oriented programming practice breaks
down, leading to code which is not properly modular. This
paper describes a simple approach to such problems which
preserves all the benefits of good object-oriented programming
style in the face of any degree of polymorphism. An example
is given in Smalltalk-80 syntax, but the technique is relevant to
all object-oriented languages.

particular type (class), are not polymorphic, and do not depend
on other types in the system.

All current object-oriented languages thus support simple
polymorphism. That is to say, a variable or expression
representing the receiver of a message may, dynamically, vary
in type. Different but appropriate results will be produced,
depending on the type of each receiver. This capability leads to
a great simplification in the description of behavior of different
but similar objects. Morecover, most object-oriented
implementations provide an efficient message construct, so that
this support for polymorphic receivers costs little more than a
conventional procedure call.

Published in ECOOP “91 proceedings, Springer Verlag Lecture Notes in Computer Science 512, July, 1991.

Optimizing
Dynamically-Typed Object-Oriented Languages
With Polymorphic Inline Caches
Urs Holzle

Craig Chambers
David Ungar'

Computer Systems Laboratory, Stanford University, Stanford, CA 94305
{urs craigungar } @self stanford.edu

Gradual Typing for Smalltalk

Esteban Allende®**, Oscar Callati*, Johan Fabry?, Eric Tanter®, Marcus Denker”

“PLEIAD Laboratory
Computer Science Department (DCC) — University of Chile
PINRIA Lille Nord Europe
CNRS UMR 8022 — University of Lille

Abstract

Being able to combine static and dynamic typing within the same language has clear benefits in order to
support the evolution of prototypes or scripts into mature robust programs. While being an emblematic
dynamic object-oriented language, Smalltalk is lagging behind in this regard. We report on the design,
implementation and application of Gradualtalk, a gradually-typed Smalltalk meant to enable incremental
typing of existing programs. The main design goal of the type system is to support the features of the
Smalltalk language, like metaclasses and blocks, live programming, and to accomodate the programming
idioms used in practice. We studied a number of existing projects in order to determine the features to
include in the type system. As a result, Gradualtalk is a practical approach to gradual types in Smalltalk,
with a novel blend of type system features that accomodate most programming idioms.

Keywords: Type systems, gradual typing, Smalltalk

It IS not a new Idea but...
It is a particular one with a

working
Implementation

10 Pines

g
Live Typing Is not about
type checking

In the “classic way”

10 Pines

Tools Examples

10 Pines

X
X Ije

X0
TicTacToe

w 10Pines

Showing/Managing
Types

10 Pines

Autocompletion

10 Pines

DynamicTlype
(SelfType, ClassType, InstanceType)

Thank you Jan Vrany & Marcus Denker

10 Pines

Actual Implementors

(“a much better use of the human brain™-Tudor et
al ©)

10 Pines

Actual Senders
Sure and Possible

(Per Message Send analysis)

10 Pines

Refactorings with Actual
Scope

10 Pines

Type Checker

(we know for sure when nil is assigned!)

10 Pines

Conclusion

10 Pines

With no extra effort,
we were able to get rid off of
most of the disadvantages

(you don't have to maintain the types, it does not
interfere when reading code, etc.)

10 Pines

Bret Victor:
'we are used to play computers’

Unknow Smalltalker:

'we are used to play memory type
games’

10 Pines

Live Typing makes types

explicit to you, you do not

have to remember or infer
them

10 Pines

It Is a very simple technique
that heavily improves the
programming experience

10 Pines

feenk: When you start using
It, you don't want to loose it

10 Pines

It does not change the syntax
It does not stop you from
compiling
It does not force you to use it
Types are not in the source code

10 Pines

| humbly believe It
respects and honors
the Smalltalk spirit

10 Pines

My Goal?

10 Pines

To say that Smalltalk is not
Dynamically Typed anymore,
but Lively Typed

(you func.... guys want types? You have types for
freel!)

10 Pines

The implementation has
bigger challenges than in a
Statically Typed Language

10 Pines

Statistics

10 Pines

Performance

Aconcagua Tests 37 ms 22 ms 1.6 x
Chalten Tests 2400 ms 2204 ms 1.08 x
Refactoring Tests 56382 ms 39650 ms 1.42 x
TicTacToe Tests 3 ms 2 ms 1.5 x
Some Kernel Tests 220 ms 151 ms 1.45 x
Average 1.41 x

The important thing is that you do not
notice it when you are programming

10 Pines

Memory

22 MB 10 MB 2.2 X

(") Default configuration

All type arrays size equals 10
Instance Variables Usage: 8.8%
Method Variables Usage: 8.4%
Method Return Usage: 8.02% \/ :
& ’ AVéA 10 Pines

Future Work

10 Pines

In the VM side

[A) Annotate types in closure parameters and variables
(under development)

[A) Support for Parameterized types (Generics) is needed for
collections, association, etc. (Collection<T>, Association<K,V>, etc.)
(under development)

[A) Implement it on the JIT VM (Currently it is implemented on the
Stack VM)
(under development — need a lot of help!!)

? To think about:

? Change the COMPILER (not the VM) to generate and initialize the PIC at
compile time!!

10 Pines

In the Image side

A Support for Parameterized types (on development)
A Add more type cast cases in the Type Checker
A Check for parameter types (Freeze annotated types before)

A Use Type Checker infrastructure to improve even more the
autocomplete

[A) Import type info from production images to development images

? Things to try/think about:
? Improve Type Checker to warn about dead code
? Check for soundness in parameters and method returns
? Delete method with transitive closure of actual sends in that method

10 Pines

Vesug

(i EWMYM

A 10 Pines

Thanks!

@HernanWilkinson — hernan.wilkinson@10pines.com — www.10pines.com
A 10 Pines

