
Live Typing
Automatic Type Annotation that improves

the Programming eXperience
Hernán	A.	Wilkinson	-	@hernanwilkinson	

10Pines	founder	–	Professor	at	UBA	

agile software development & services

“Wilklippy”

Live Typing
Automatic Type Annotation that improves

the Programming eXperience
Hernán	A.	Wilkinson	-	@hernanwilkinson	

10Pines	founder	–	Professor	at	UBA	

agile software development & services

Is Smalltalk Cool??

YEAH!
Of Course!

Why?

Because it is Dynamically
Typed

Because it is a Live
Environment

But …

Looking for senders is done statically!!

we get more senders than the real ones
we need to manually filter them

Looking for implementors is done
statically!!

we get more implementors than the real ones

we need to manually filter them

Renaming a message is done statically!!

we get more senders and implementors than the real
ones

we need to manually filter them

Autocomplete in the browser is done
statically

we get don’t get the real messages an object

understands

and so on…

But Smalltalk is Cool!!

Because it is Dynamically
Typed

Because it is a Live
Environment

But …

But …

How	can	we	get	rid	of	this	“but”?	
Aren’t	you	tired	of	these	problems?	

I’m tired of all those
problems

It’s time to act!

What if we combine

Dynamically Typed
+

Live Environment

to get Automatic Type Annotation
and improve the tools with that

info?

What is Live Typing?

Automatic type annotation (done by the VM)
+

 Tools to improve the development experience

(Annotation happens while the system runs)

Live Typing

It is not a new idea…

Since 1986!

It is not a new idea but…
It is a particular one with a

working
implementation

Live Typing is not about
type checking

in the “classic way”

Tools Examples

TicTacToe

Showing/Managing
 Types

Autocompletion

DynamicType
(SelfType, ClassType, InstanceType)

Thank you Jan Vrany & Marcus Denker

Actual Implementors

(“a much better use of the human brain”-Tudor et
al J)

Actual Senders
Sure and Possible
(Per Message Send analysis)

Refactorings with Actual
Scope

Type Checker

(we know for sure when nil is assigned!)

Conclusion

With no extra effort,
we were able to get rid off of
most of the disadvantages

(you don’t have to maintain the types, it does not

interfere when reading code, etc.)

Bret Victor:
 ‘we are used to play computers’

Unknow Smalltalker:

 ‘we are used to play memory type
games’

Live Typing makes types
explicit to you, you do not
have to remember or infer

them

It is a very simple technique
that heavily improves the
programming experience

feenk: When you start using
it, you don’t want to loose it

It does not change the syntax
It does not stop you from

compiling
It does not force you to use it

Types are not in the source code

I humbly believe it
respects and honors

the Smalltalk spirit

My Goal?

To say that Smalltalk is not
Dynamically Typed anymore,

but Lively Typed

(you func…. guys want types? You have types for
free!)

The implementation has
bigger challenges than in a
Statically Typed Language

Statistics

Performance
Typed	VM	 Stack	VM	 Difference	

Aconcagua	Tests	 37	ms	 22	ms	 1.6	x	

Chalten	Tests	 2400	ms	 2204	ms	 1.08	x	

Refactoring	Tests	 56382	ms	 39650	ms	 1.42	x	

TicTacToe	Tests	 3	ms	 2	ms	 1.5	x	

Some	Kernel	Tests	 220	ms	 151	ms	 1.45	x	

Average	 1.41	x	

The important thing is that you do not
notice it when you are programming

Memory

Live	Typing	Image*	 Common	Image	 Difference	

22	MB	 10	MB	 2.2	x	

(*) Default configuration
•  All	type	arrays	size	equals	10	
•  Instance	Variables	Usage:	8.8%	
•  Method	Variables	Usage:	8.4%	
•  Method	Return	Usage:	8.02%	

Future Work

In the VM side
� 	Annotate	types	in	closure	parameters	and	variables		
(under	development)	
� 	Support	for	Parameterized	types	(Generics)	is	needed	for	
collections,	association,	etc.	(Collection<T>,	Association<K,V>,	etc.)	
(under	development)	
� 	Implement	it	on	the	JIT		VM	(Currently	it	is	implemented	on	the	
Stack	VM)	
(under	development	–	need	a	lot	of	help!!)	
❓ To	think	about:	
❓ Change	the	COMPILER	(not	the	VM)	to	generate	and	initialize	the	PIC	at	
compile	time!!	

In the Image side
� 	Support	for	Parameterized	types	(on	development)	
� 	Add	more	type	cast	cases	in	the	Type	Checker	
� 	Check	for	parameter	types	(Freeze	annotated	types	before)	
� 	Use	Type	Checker	infrastructure	to	improve	even	more	the	
autocomplete	
� 	Import	type	info	from	production	images	to	development	images	
❓ Things	to	try/think	about:	
❓ Improve	Type	Checker	to	warn	about	dead	code	
❓ Check	for	soundness	in	parameters	and	method	returns	
❓ Delete	method	with	transitive	closure	of	actual	sends	in	that	method	

	

Thanks!

@HernanWilkinson – hernan.wilkinson@10pines.com – www.10pines.com

