
Evolving
ALLSTOCKER

Masashi Umezawa & Kazunori Ueda

ESUG 2019

Agile increments with Pharo Smalltalk

What is ALLSTOCKER?

● Online platform for trading used construction equipment

and machinery

○ Marketplace

○ Real-time Bid Auction

● Over 4000 worldwide buyers

● Over 400 machines/month listed on the site

● Most systems are built with Pharo Smalltalk

https://allstocker.com/
https://pharo.org/

Our Development Process - KANBAN

Backlog Analysis Development Test Deploy

○ Swarm to make the flow smoother!

→→→ →

2015/02- In the Beginning

● First prototype was made in two weeks

○ Only 4 prerequisites (Seaside, Glorp, Nagare, AWS SDK for Smalltalk)

○ User/Machine registration, photo uploader, watchlist

● After 90 releases

○ 34 prerequisites

○ 1100+ classes

https://github.com/SeasideSt/Seaside
https://github.com/pharo-rdbms/glorp
https://github.com/mumez/nagare-logger
https://github.com/newapplesho/aws-sdk-smalltalk

Our policy - Smalltalk as a Hub

● We take polyglot microservices approach

○ Programming languages

■ Smalltalk, JavaScript, Ruby, Lua, Groovy, Erlang, Python

○ Databases

■ PostgreSQL, Redis, Neo4j, Tarantool, MongoDB

○ External APIs

■ Elasticsearch, SendGrid, Mixpanel, Fluentd

● Smalltalk is a great hub for leveraging these elements

Marketplace Search
Increments

Why Search is Important?

● In our site, Search event ratio is

43+ percent

● Buyers first search, then view,

and buy
Search! View

2015/7 - Full-Text Search

● Basic full-text search

● Elasticsearch-smalltalk for multilingual full-text search

○ Different analyzers for each language

○ Search results are boosted according to the user’s

primary language

https://github.com/newapplesho/elasticsearch-smalltalk
https://neo4j.com/

Elasticsearch-Smalltalk

prepareSearch
 esSearch := ESSearch new index: self index.
 esSearch minScore: self minScore.
 ^esSearch

search
 es := self prepareSearch.
 es query: self buildQuery.
 ^ es searchFrom: self offset size: self limit

buildNameMatchQuery: words fieldName: fieldName ngramBoost:
boostValue
 | phraseQuery matchQuery prefixQuery |
 phraseQuery := ESMatchQuery new
 matchPhrase;
 field: fieldName;
 query: words;
 yourself.
 prefixQuery := ESPrefixQuery new
 field: fieldName;
 query: words;
 yourself.
 matchQuery := ESMatchQuery new
 field: fieldName, '__ngram';
 query: words;
 boost: boostValue;
 yourself.
 ^ ESBoolQuery new
 should: {phraseQuery. prefixQuery. matchQuery};
 minimum_should_match: 1;
 yourself.

● Building

● Searching
Boosted!

https://github.com/newapplesho/elasticsearch-smalltalk

2016/2 - Advanced Search

● Let’s support advanced search!

○ Many aggregation options

■ by category, maker, model number

● Elasticsearch was not enough to do complex aggregations

● Joining tables with Glorp was hard to maintain

● We adopted Graph database - Neo4j

https://neo4j.com/

Graph Model (1)

● Nodes and Relationships

○ (Machine)-[BELONGS_TO_CATEGORY]->(Category)

○ (Machine)-[IS_OF_MODEL]->(Model)

○ (Maker)-[MADE_MODEL]->(Model)

○ (Model)-[HAS_SPEC]->(Spec)

○ (Spec)-[BELONGS_TO_SPEC_CATEGORY]->(SpecCategory)

Neo4reSt

● Neo4j database client and Object wrappers

○ Introducing Neo4reSt

db := N4GraphDb new.
node1 := db createNode: {#name-> 'ume'}.
node2 := db createNode: {#name-> 'Smalltalk'}.

relation1 := node1 relateTo: node2 type: #uses properties: {#years->18}.

db initialNode relateTo: node1 type: #people

http://smalltalkhub.com/#!/~MasashiUmezawa/Neo4reSt
https://drive.google.com/file/d/0B-QQfEn6pNsXTzF3UnBZWHA3ZW8/view

Graph Model (2)

● We can freely get

nodes/ relationships

using Cypher query

language

https://neo4j.com/developer/cypher-query-language/

2017/2 Revamping Advanced Search

● Need to generate complex queries dynamically according to

various search options (spec filters)

● Hard-coded cypher queries were unmaintainable.

● SCypher was developed

○ “Manipulating Neo4j from Pharo Smalltalk” (Sample code project)

http://smalltalkhub.com/#!/~MasashiUmezawa/SCypher
https://github.com/quentinplessis/smalltalk-neo4j

SCypher

user := 'user' asCypherObject.
friend := 'friend' asCypherObject.
friends := 'friends' asCypherObject.
query := CyQuery statements: {
 CyMatch of: (CyRelationship start: user end: friend type: 'FRIEND').
 CyWhere of: (CyExpression eq: (user prop: 'name') with: 'name'
asCypherParameter).
 CyWith of: (user, ((CyFuncInvocation count: friend) as: friends)).
 CyWhere of: (CyExpression gt: friends with: 10).
 (CyReturn of: user) limit: 10.
}.
query cypherString. 'MATCH (user)-[:FRIEND]-(friend)

WHERE (user.name = $name)
WITH user, count(friend) AS friends
WHERE (friends > 10)
RETURN user LIMIT 10 '

● Generated query can be executed by

N4RestClient>>queryByCypher: queryString params: dictionary

http://smalltalkhub.com/#!/~MasashiUmezawa/SCypher

Auction Increments

2016/7-9- Beginning Realtime Auction System

● Need a highly reactive real-time bidding auction system

○ Vue.js (presentation)

○ Pharo (business logic)

○ Erlang (bidding core)

● Web API + Ajax + WebSocket

Original Auction System Network Architecture

● Bid requests

○ HTTP

● Notifications

○ WebSocket

2018/3

Auction System Crisis

● Slow updates
● Too many connections
● Heavy load
● Difficult to log-in...

2018/4-8 Scaling-out Auction System

1. On-demand notifications

2. Reducing the number of connections

3. Multiple Pharo images

● Our strategies:

On-demand Notifications

● Originally each client gets periodic updates on all items

○ Via Zinc-WebSocket

● Each client has observing item list

○ Client gets updates only when the item values are changed

○ Via Zinc-Server-Sent-Events

https://github.com/svenvc/docs/blob/master/zinc/zinc-websockets-paper.md
http://forum.world.st/Zinc-Server-Sent-Events-td4705635.html

Reducing the Number of Connections

● SSE + HTTP/2

○ Enables single TCP connection for many requests

● SSE is unidirectional and lightweight

server {
 listen 443 ssl http2;
 ...
}

Multiple Pharo images

● Let’s utilize multicore CPU!

● We divided one pharo image into three

○ auction-1, auction-2 (app server)

○ webhook (interact with Erlang bid server)

● Web API + Redis pubsub for mutual communication

○ RediStick pubsub mode

http://smalltalkhub.com/#!/~MasashiUmezawa/RediStick

RediStick

● A redis client supporting auto-reconnect

○ Reliable pubsub by pinging to itself

stick := RsRediStick targetUrl: 'sync://localhost'.
stick connect.
stick beSticky. "Auto reconnect when server is not accessible"
stick onError: [:e | e pass].
stick endpoint subscribe: #('ping') callback: [:msg | msg inspect].
"From another stick"
pubStick endpoint publish: 'ping' message: 'OK?'

http://smalltalkhub.com/#!/~MasashiUmezawa/RediStick

Load-balancing via nginx

● Load-balancing by cookie-based sticky session

upstream auction_upstream {
 hash $cookie_stocker consistent;
 server unix:/var/run/auction_1.sock;
 server unix:/var/run/auction_2.sock;
}
server {
 listen unix:/var/run/auction_1.sock;
 location / {
 proxy_pass http:// as-auction-1.default.svc.cluster.local: 9000;
 }
}
server { … }

Revised Auction Architecture

●3 pharo

images

●PUBSUB &

SSE for async

notifications

$ kubectl top pods

NAME CPU(cores) MEMORY(bytes)
as-auction-1-dpl-dc699554b-c5jh4 115m 261Mi
as-auction-2-dpl-5d8bbd7b5c-qwlbp 111m 236Mi
as-auction-webhook-dpl-66f47557b-jn2dc 48m 194Mi
as-marketplace-dpl-7d898866d4-w72cc 119m 736Mi

DONE!!

Questions?

● Visit allstocker.com

● Please stay tuned for more updates!

https://allstocker.com/

