
ESUG 2019: Concurrency

by Santiago Bragagnolo - Esug - 2019
santiago.bragagnolo@gmail.com

santiago.bragagnolo@inria.fr
skype:santiago.bragagnolo

@sbragagnolo

mailto:santiago.bragagnolo@gmail.com?subject=
skype:santiago.bragagnolo

Who am I
• 2002 - 2012

- Software engineer/developer in the
private sector

- Teaching programming

• 2012 - 2019

- Research engineer @ Ecole de mines
& INRIA.

• 2019 - ????

- Starting a PhD :)
(i have less hair now, same appetite)

Process

Processes:
Living entities

Life cycle
• Born

• Grow

• Reproduce / Exchange

• Die

Processes in Pharo

Processes:
example of usage

Processes:
example of usage

Processes:
example of usage

Processes:
example of usage

Processes:
example of usage

Processes:
example of usage

Manage process’s
life cycle is painful

• When to start a process?

• When to kill a process?

• How to keep a process alive?

• How to synchronise them?

What is TaskIt
• Task focused concurrency framework

• Open source (https://github.com/sbragagnolo/
taskit)

• Used in projects where performance matters
(PhaROS, Makros, Fog, etc)

• 6 years old

https://github.com/sbragagnolo/taskit
https://github.com/sbragagnolo/taskit

Why TaskIt
• Synchronise different tasks

• Unlock development perspectives

• Process lifecycle agnostic

• Process lifecycle fanatic

TaskIT blueprints

Tasks
like programs, but smaller

• Objects

• Reusable computation units

• Process agnostic

• Built up from

• Message send

• Blocks

Task Examples

we do not care about when this task would be executed, not either it result

we do not care about when it will be executed, yet we do care about the result

Scheduled Task

• The task will be executed at
some point

• Does not matter when

• No need of synchronisation

The Invisible
hand of running

strategyMy call

Scheduled Task

• Objects

• Represent the future of a
computation

• Process agnostic

Futures

• As mean for getting the computed task result

Futures

VOUCHER FOR
COMPUTATION

RESULT:

CALCULATING…

Futures
• As mean of synchronisation

• Synchronous

• Asynchronous

• Tasks combination

Synchronous
My call The Invisible hand

of running strategy

• synchronous

• asynchronous

• task combination

VOUCHER FOR
COMPUTATION

RESULT:

CALCULATING…

Synchronous

• synchronous

• asynchronous

• task combination

Synchronous

• synchronous

• asynchronous

• task combination

Asynchronous

• synchronous

• asynchronous

• task combination

My call The Invisible hand
of running strategy

VOUCHER FOR
COMPUTATION

RESULT:

CALCULATING…

Asynchronous

• synchronous

• asynchronous

• task combination

Asynchronous

• synchronous

• asynchronous

• task combination

Task combination

• synchronous

• asynchronous

• task combination

• Reinforce sequence

• Transform results

• Trigger new processes

Collect

• synchronous

• asynchronous

• task combination

Run in sequence

VOUCHER FOR
COMPUTATION

RESULT:

BLUE MORPH…

VOUCHER FOR
COMPUTATION

RESULT:

PAINT IT RED…

VOUCHER FOR
COMPUTATION

RESULT:

RED MORPH…

+ =

Zip

• synchronous

• asynchronous

• task combination

Run concurrently and join

VOUCHER FOR
COMPUTATION

RESULT:

BLUE MORPH…

VOUCHER FOR
COMPUTATION

RESULT:

RED MORPH…

ZIP =
VOUCHER FOR
COMPUTATION

RESULT:

BLUE AND RED
MORPHS…

Fallback To

• synchronous

• asynchronous

• task combination

Run concurrently, responds conditionally

VOUCHER FOR
COMPUTATION

RESULT:

FALLBACK
COMPUTATION

VOUCHER FOR
COMPUTATION

RESULT:

INFALLIBLE
COMPUTATION…

VOUCHER FOR
COMPUTATION

RESULT:

FALLIBLE
COMPUTATION…

FBT =

Runners

Runners
• Objects

• Represent the processing
architecture

1. How

2. Where

3. When

Runners
• Same process

• New process

• Worker

• Worker pool

• Service

Same Process

• Same process

• UI Runner

• New process

• Worker

• Worker pool

• Service

• Simple to instantiate

• Non lifecycle control required

• Handy for debugging simple errors

Same Process

• Same process

• UI Runner

• New process

• Worker

• Worker pool

• Service

UI Runner

• Same process

• UI Runner

• New process

• Worker

• Worker pool

• Service

• Simple to instantiate

• Non lifecycle control required

• Handy for UI tasks

UI Runner

• Same process

• UI Runner

• New process

• Worker

• Worker pool

• Service

New-Process

• Same process

• UI Runner

• New process

• Worker

• Worker pool

• Service

• Simple to instantiate

• Lifecycle managed automatically: The
process dies after the execution of the task

• Handy for executing tasks at the moment

New-Process

• Same process

• UI Runner

• New process

• Worker

• Worker pool

• Service

Worker

• Same process

• UI Runner

• New process

• Worker

• Worker pool

• Service

• Instantiation requires to hold the worker
reference

• Lifecycle managed by garbage collection &
Watch dog

• Handy for reusing the same process

Worker

• Same process

• UI Runner

• New process

• Worker

• Worker pool

• Service

Worker-Pool

• Same process

• UI Runner

• New process

• Worker

• Worker pool

• Service

• Instantiation requires to hold the worker
reference

• Lifecycle managed by garbage collection &
Watch dog

• Handy for reusing the same process and
control the system’s load

Worker-Pool

• Same process

• UI Runner

• New process

• Worker

• Worker pool

• Service

Service

• Same process

• UI Runner

• New process

• Worker

• Worker pool

• Service

• Instantiation requires to set the task before
starting the service, and also requires an
unique name

• Lifecycle managed by the user by start/stop/
restart

• Handy for providing services/daemons

Service

• Same process

• UI Runner

• New process

• Worker

• Worker pool

• Service

Appendix 1:
Extensions

TaskIt Extensions:
ActIt

• Provides an ActTalk inspired implementation

• Provides processing flavours

• Worker

• UI

• Same process

TaskIt Extensions:
ActIt

TaskIt Extensions:
Shell

• Provides a new kind of task

• Is based on OS-Subprocess

• Allows to transform standard output into results

TaskIt Extensions:
Shell

TaskIt Extensions:
ForkIt

• Master / slave architecture

• Reuse most of the task it
and task it shell architecture

• Alpha state, but improving
fast

ForkIt

TaskIt Extensions:
ForkIt

• Provides an extension for
building images

• Provides a new runner:
Remote Worker

TaskIt Extensions:
ForkIt

• Working on adapting to the
industrial standards

• Process communication
Message queue
(RabbitMq)

• Building process (Puppet/
Vagrant/Others / not yet
decided)

Thanks :)
• Synchronise different tasks by using powerful and highly

tested futures

• Delegate the lifecycle control to specialised runners,
according with your domain

• Control the load of your image by using pools of processes

• Boost your productivity in concurrency by using a mature
library used for user interaction and robotic communication

• https://github.com/sbragagnolo/taskit

https://github.com/sbragagnolo/taskit

Appendix 2: All the
combinators

Combinations: Collect

• synchronous

• asynchronous

• task combination

Combinations: Select

• synchronous

• asynchronous

• task combination

Combinations:
Flat Collect

• synchronous

• asynchronous

• task combination

Combinations: Zip

• synchronous

• asynchronous

• task combination

Combinations: On-Do

• synchronous

• asynchronous

• task combination

Combinations:
Fallback To

• synchronous

• asynchronous

• task combination

Combinations:
First complete

• synchronous

• asynchronous

• task combination

And then

• synchronous

• asynchronous

• task combination

AND THEN AND THEN

Run in sequence

• From old french “concurrencé”

• Co-occurrence (Happening simultaneously)

• Competition

Concurrence

Multiple computations happening at the same time, in the
same system

Concurrence (CS)

or

Ability of different parts or units of a program, algorithm, or problem to be executed
out-of-order or in partial order, without affecting the final outcome.

Why should we?

• Not blocking the user

• Enhancing the resources usage

• Doing things in background (or while the CPU is idle)

• Managing many time-consuming operations simultaneously (I/O)

Concurrence (CS)

• Sharing resources

• Maximising the overall performance, in detriment of
the particular or individual performance

Concurrency

