
Slot Composition
Marcus Denker

Part 1: Introduction

Everything is an Object

Everything?

What about Variables?

Object subclass: #Point
instanceVariableNames: 'x y'
classVariableNames: ''
package: 'Kernel-BasicObjects'

Instance Variables
Class Variable

They are not objects!

Object subclass: #Point
instanceVariableNames: 'x y'
classVariableNames: ''
package: 'Kernel-BasicObjects'

This is just a String!

Instance Variables
Class Variables

They are not objects!

Not just definition, the
whole reflective API is
string / offset based!

Point instVarNames

5@6 instVarAt: 1

5@6 instVarAt: 1 put: 2

5@6 instVarNamed: #x put: 2

We can do better!

We did do better!

Slots and ClassVariables
in Pharo

Slots in 2 minutes

Slots: First Class Ivars

• Every instance variable definition is described an instance
of Slot (or subclass)

• Compiler delegates code generation to Slot class

• You can easily make your own!

• A set of interesting Slots are emerging

Slots: First Class Ivars

Object subclass: #Point
slots: { #x. #y }
classVariables: { }
package: 'Kernel-BasicObjects'

• For InstanceVariableSlot: we write just the #name

• Bytecode exactly the same as ST80 Instance Variables

Slots: API
pointXSlot := Point slotNamed: #x.

#we can read
pointXSlot read: (4@5).
pointXSlot write: 7 to: (4@5).

pointXSlot usingMethods.
pointXSlot astNodes.
pointXSlot assignmentNodes.

Slots: make your own
Slot subclass: #ExampleSlotWithState

slots: { #value }
classVariables: { }
package: ‘Slot-Examples-Base'

read: anObject
^ value

write: aValue to: anObject
value := aValue

Slots: First Class Ivars

Object subclass: #MyClass
slots: { #ivar => ExampleSlotWithState }
classVariables: { }
package: 'Kernel-BasicObjects'

• we can compile normal read and assignment

• state ends up in the slot (inspect the slot!)

Slots: more…

• bytecode: override #emitStore: and #emitValue:

• class builder calls #installingIn: on class creation

• Initialize instances: if #wantsInitalization is true, #new sends
#initialize: to all slots with the new instance as parameter

• Slots can be invisible (just implement #isVisible)

Examples
• PropertySlot

• BooleanSlot

• UnlimitedInstanceVariableSlot

• HistorySlot

• ProcessLocalSlot

• ComputedSlot

• RelationSlot

• LazySlot

• InitializedSlot

• ComputedSlot

• SpObservableSlot

• WriteOnceSlot

Start to be used
• In Pharo:

• Spec: Observable Slot

• Others:

• Famix: relations, meta data (tag)

• Typed Slots Project

Part 2: The Composition
Problem

Let’s take just two

• SpObservableSlot

• Slot with a default value (InitializedSlot or LazySlot)

Let’s take just two
Object subclass: #MyClass2

slots: { #ivar => LazySlot default: 5 }
classVariables: { }
package: ‘Kernel-BasicObjects'

Object subclass: #MyClass2
slots: { #ivar => SpObservableSlot}
classVariables: { }
package: ‘Kernel-BasicObjects'

I want a SpObservableSlot
with default value!

What to do now?

I could implement
LazyObservableSlot

Combinatorial Explosion

• PropertySlot

• BooleanSlot

• UnlimitedInstanceVariableSlot

• HistorySlot

• ProcessLocalSlot

• ComputedSlot

• RelationSlot

• LazySlot

• InitializedSlot

• ComputedSlot

• SpObservableSlot

• WriteOnceSlot

SpObservableSlot + LazySlot default: 5

Let’s take just two

Object subclass: #MyClass2
slots: { #iv => SpObservableSlot + LazySlot default: 5 }
classVariables: { }
package: ‘Examples'

It is not that simple

• We want to compose *instances*, not classes!

• We want to combine behaviour: e.g. three slots want to
change what happens after a read

• Inheritance or Traits do not solve the problem

Kind of Slots
• Storage (“Implementation”)

• Decorators

• Wrappers

Storage

• Define how to store data.

• Examples: PropertySlots, InstanceVariableSlot,
ComputedSlot

• It only makes sense to have one

Decorators

• Before / After read and write

• Initialize instances: slot gets notified on #new

• class builder hook on class creation

• Meta Data (e.g. tagged slot)

• We can combine as many decorators as we want!

Wrappers

• Wrap and write, unwrap on read

• Example: Weak Slot: Wrap into a Weak Array

• We have some of them, as they are simple to write:

• Weak, ProcessLocal, History, WriteOnce

Wrappers: Problems

• Turns Write into a read on the outer slot.

• Can not compose easily (order!)

• Weak + WriteOnce: the history collection is weak!

• WriteOnce + Weak: Write goes to weak array

Wrappers

• Most (all?) wrappers can be implemented as decorators +
additional hidden state.

• Let’s support one wrapper for now

Solution

• ComposedSlot: a Slot composed of

• One Storage Slot. InstanceVariableSlot is default

• 0..n Decorators:

• one Wrapper

InstanceVariable +
InitializedSlot default: 5

InitializedSlot default: 5

Reflective Read
read: anObject

| value |
self decorators do: [:decorator |
decorator beforeRead: anObject].

value := self wrapperOrImplementor read: anObject.

self decorators reversDo: [:decorator |
decorator afterRead: anObject].

^value.

Status

• Work in progress implementation

• Currently re-implement all existing Slots to be
composable

Future Work

• Integrate with Pharo

• Use in Spec: SpObservable + Initialized, for example

• Unify variable definition for Class Variables and Slots

Questions?

InstanceVariable +
InitializedSlot default: 5

