Pharo Smalltalk as Universal Development Platform

Dave Mason
Ryerson Universityi

©2019 Dave Mason @

RYERSON
UNIVERSITY

https://creativecommons.org/licenses/by-nc-sa/4.0/

One IDE to rule them all,
One IDE to find them,
One IDE to bring them all
and in the syntax bind them.
— with apologies to J.R.R. Tolkien

Why Pharo? (or other modern Smalltalks)

@ want to program in Smalltalk
@ best-in-class IDE
@ live object debugging

@ All the things at this conference: GlamourousToolit Roassal DrTest
Seaside Scientific Workbench SwiftPlayground and so much
more....

@ including what Dave West said yesterday

@ desktop

@ headless

@ configurable images

@ command line scripting
@ web with PharodS

@ standalone with lllicium

How Pharo?

@ primitives/plug-ins Slang/lllicium

@ Foreign Function Interface - FFlI

@ communication Python-Bridge

@ transpilation: PharodsS, lllicium, PharoJVM, Woden
@ embedded VM

@ convert from a friendly (Smalltalk) language to ugly one

@ deployment target limitations (GPU/Browser/cloud
provider/footprint)

How Transpile?

@ walk the compiler AST

@ typically translate to target AST

@ possible type-checking/type-inference - helped by target types
@ optional optimization of target AST

@ walk the target AST generating target code

Example: Why PharoJVM?

want to program in Smalltalk

sometimes need to deploy in enterprise (e.g. WebSphere)
accessing Java frameworks - Minecraft, Yarn

possible performance advantage

may combine with PharoJS to target WebAssembly/native
might allow writing Android apps directly

Minecraft example

package lavavision;

import java.util.logging.Logger;

import org.bukkit.command.Command;
import org.bukkit.command.CommandSender;
import org.bukkit.entity.Player;

import org.bukkit.plugin.Plugin;

import org.bukkit.plugin.java.JavaPlugin;
import org.bukkit.block.Block;

import org.bukkit.util.BlockIterator;
import org.bukkit.Material;

import org.bukkit.Sound;

import org.bukkit.Effect;

public class LavaVision extends JavaPlugin {

public boolean onCommand(CommandSender sender, Command command,
String commandLabel, String[] args) {
if (commandLabel.equalsIgnoreCase("lavavision")) {
if (sender instanceof Player) {
Player me = (Player)sender;
BlockIterator sightItr = new BlockIterator (me, 100);
while (sightItr.hasNext()) {
Block b = sightItr.nextQ);
me.playEffect(b.getlocation(), Effect.MOBSPAWNER_FLAMES, null);
if (b.getType() != Material.AIR) {
b.setType(Material .LAVA);
me.playSound(b.getLocation(), Sound.ENTITY_ENDERDRAGON_FIREBALL_EXPLODE, 1.0f, @.5f);
break;

}

return true;

return false;

onCommand2: me command: command label: commandLabel args: args
{org bukkit entity. org bukkit util. org bukkit Effect. org bukkit Material. org bukkit Sound.} scope: [: s |
(commandLabel equalsIgnoreCase: 'lavavision') ifTrue: [
(me isKindof: s Player) ifTrue: [
(s BlockIterator new: me with: 100) do: [: b |
me playEffect: b getlLocation effect: s MOBSPAWNER_FLAMES <ignore: nil.
b getType = s AIR iffFalse: [
b setType: s LAVA.
me playSound: b getLocation sound: s ENTITY_ENDERDRAGON_FIREBALL_EXPLODE
volume: 1.0 pitch: 0.5.
A true
11111

r false

1 egl: param

2 | xy z |

3 x = 0.

4 z =y := 42.

5 #(2 5 7) asOrderedCollection
6 do: [: each | | w |

7 w = Yy + param;

8 X 1= X + w.

9

x > 10 ifTrue: [T y].

11 T x + z

Challenges - PharoJS

@ both have dynamic/manifest types

@ Javascript is prototype, Smalltalk is class-based

@ non-local return

@ almost everything is an object

@ deficit numeric stack, strings immutable

@ infix artithmetic faster than method calls - need to leverage

Challenges - PharoJVM

@ Smalltalk has dynamic/manifest types

@ the JVM is fundamentally staticly typed - even though many new
Java language changes hide this

@ could create everything as object - like Scala, Jython, Redline,
jRuby

@ e.g. new Integer (42) - will heap allocate, final, no methods
for add, etc.

@ includes 8 primitive types (not Objects - although)

@ for performance, need to leverage this

@ non-local return, BlockClosure, Symbols, immutable String,
deficient numeric stack

There is an object version of each primitive type

Challenges - Python/Ruby

@ why bother?

@ can provide immediate access to libraries

@ similar enough that long-term should be to leverage FFI
@ non-local return, BlockClosure, missing fractions

Challenges - GPU/SQL/NoSQL

@ Smalltalk has dynamic/manifest types

@ targets are fundamentally staticly typed

@ probably useful with limited semantics

@ gain common environment, expressive syntax

Challenges - C/Wasm/native

Smalltalk has dynamic/manifest types
targets are fundamentally staticly typed
garbage collection

non-local return

could create everything as Object

for performance, need to avoid this
BlockClosure, deficient numeric stack

Conclusions

@ can leverage FFI
@ can leverage transpilation
@ for some applications don’t need full semantics

@ transpilation is quite popular - would be nice to create a common
infrastructure

@ contact me if you have ideas about what this would look like

Questions?

@dmasonrose @pharojs

