
Pharo Smalltalk as Universal Development Platform

Dave Mason
Ryerson Universityi

©2019 Dave Mason

https://creativecommons.org/licenses/by-nc-sa/4.0/

One IDE to rule them all,
One IDE to find them,
One IDE to bring them all
and in the syntax bind them.

– with apologies to J.R.R.Tolkien

Why Pharo? (or other modern Smalltalks)

want to program in Smalltalk
best-in-class IDE
live object debugging
All the things at this conference: GlamourousToolit Roassal DrTest
Seaside Scientific Workbench SwiftPlayground and so much
more....
including what Dave West said yesterday

What Pharo?

desktop
headless
configurable images
command line scripting
web with PharoJS
standalone with Illicium

How Pharo?

primitives/plug-ins Slang/Illicium
Foreign Function Interface - FFI
communication Python-Bridge
transpilation: PharoJS, Illicium, PharoJVM, Woden
embedded VM

Why Transpile?

convert from a friendly (Smalltalk) language to ugly one
deployment target limitations (GPU/Browser/cloud
provider/footprint)

How Transpile?

walk the compiler AST
typically translate to target AST
possible type-checking/type-inference - helped by target types
optional optimization of target AST
walk the target AST generating target code

Example: Why PharoJVM?

want to program in Smalltalk
sometimes need to deploy in enterprise (e.g. WebSphere)
accessing Java frameworks - Minecraft, Yarn
possible performance advantage
may combine with PharoJS to target WebAssembly/native
might allow writing Android apps directly

Minecraft example

in Java

in Smalltalk

Challenges - Block Closures

1 eg1: param
2 | x y z |
3 x := 0.
4 z := y := 42.
5 #(2 5 7) asOrderedCollection
6 do: [: each | | w |
7 w := y + param;
8 x := x + w.
9 x > 10 ifTrue: [↑ y].

10].
11 ↑ x + z

Challenges - PharoJS

both have dynamic/manifest types
Javascript is prototype, Smalltalk is class-based
non-local return
almost everything is an object
deficit numeric stack, strings immutable
infix artithmetic faster than method calls - need to leverage

Challenges - PharoJVM

Smalltalk has dynamic/manifest types
the JVM is fundamentally staticly typed - even though many new
Java language changes hide this
could create everything as Object - like Scala, Jython, Redline,
jRuby
e.g. new Integer(42) - will heap allocate, final, no methods
for add, etc.
includes 8 primitive types (not Objects - although)
for performance, need to leverage this
non-local return, BlockClosure, Symbols, immutable String,
deficient numeric stack

There is an object version of each primitive type

Challenges - Python/Ruby

why bother?
can provide immediate access to libraries
similar enough that long-term should be to leverage FFI
non-local return, BlockClosure, missing fractions

Challenges - GPU/SQL/NoSQL

Smalltalk has dynamic/manifest types
targets are fundamentally staticly typed
probably useful with limited semantics
gain common environment, expressive syntax

Challenges - C/Wasm/native

Smalltalk has dynamic/manifest types
targets are fundamentally staticly typed
garbage collection
non-local return
could create everything as Object
for performance, need to avoid this
BlockClosure, deficient numeric stack

Conclusions

can leverage FFI
can leverage transpilation
for some applications don’t need full semantics
transpilation is quite popular - would be nice to create a common
infrastructure
contact me if you have ideas about what this would look like

Questions?

@dmasonrose @pharojs

