
Roassal 3
ObjectProfile

Alexandre Bergel

Milton Mamani

The ESUG19 Talk was a Demo

Watch it on Youtube

https://www.youtube.com/watch?v=e5rpcmV-igE

The Following Slides are from another Presentation,

adding more details

Roassal in a nutshell

• Canvas and shapes

• View and elements.

• This is the version more than 2 less than 4.

• Nothing in this presentation is final.

Canvas

The Canvas

• Used to draw graphic objects.

• The canvas is a TSCanvas.

• It is the canvas where you can put shapes.

• It is subclass of TSObject or Object.

• Roassal use the notation TSShape, TSCanvas, TSBox,
(Trachel Shape) for canvas components.

Canvas parts

• Shapes

• Events

• Morph

• Animations

• And more

Canvas Shapes
• The canvas has basic shapes

• And fixed shapes 
 
 
 
 
 
 
 
 
 

Shapes

• All the shapes has these properties.

• There is composition.

• There are 2 groups, lines and bounding shapes.

Canvas events

• The canvas and the shapes has an announcer. 
 
 
 
 
 
 
 

Canvas morph

• TSCanvas has an instance TSAthensMorph

• This is the visual representation, in the visual smalltalk
system.

• TSAthensMorph has reference to the TSCanvas.

• The morph sends the events to the canvas

• The morph draws the canvas

Canvas visitor

• TSCanvas handles a visitor, with accept: method

• This visitor renders the canvas and each shape in the
morph with athens. TSAthensRenderer

• For the future Roassal could have: TSBlocRenderer,
TSPNGRenderer, svg, pdf, html visitors.

Animation
• TSCanvas has a collection of animations.

• When TSAthensMorph renders the canvas it play the
animations, to update the canvas. 
 
 
 
 
 
 
 

Scales
• The animation and other examples of roassal uses

package Roassal3-Scales

• These scales objects are very useful to transform(scale) a
value to another value.

• Scale is f(x) = y

• Scale has a domain, x or input(numbers, points or arrays)

• Scale has a range, or y or output(number, points or
colors).

Canvas Example
| c b |
c := TSCanvas new.
b := TSBox new
 extent: 100@100;
 border: TSBorder new.
c addShape: b.

c newAnimation
 easing: TSEasing bounce;
 from: -100@ -100;
 to: 100@100;
 on: b set: #position:.
c newAnimation
 from: Color red;
 to: Color blue;
 on: b set: #color:.
c newAnimation
 from: 0;
 to: 10;
 on: b border set: 'width:'.
c
 when:TSMouseClick
 do: [c animations do: #pause];
 when: TSMouseDoubleClick
 do: [c animations do: #continue].
c clearBackground: false.
c open.

View

View

• View is the main component in Roassal

• View has elements, edges and a canvas

• To create a view and its elements, Roassal uses builders
and interactions.

• View uses layouts.

 View

• The view is a RSView (Roassal View).

• RSView and RSElements are used to unify the model
visualization to the renderable object.

• Components related to the view uses the notation
RSView, RSElement, RSEdge, etc

• Uses a canvas, and handles elements and edges

View

Builders

• There are two groups o builders

• Shapes builders

• View builders

Shape builder

• Shape builders creates from the models or a domain,
elements. 
 
 
 
 
 
 
 

elementsBuilder := RSShapeBuilder box
 width: [:model | model methods size + 5];
 height: [:model | model instVarNames size + 5].

elementsBuilder elementsOn: Collection withAllSubclasses.

View builders

• Creates a view with a predefined elements.

• These builders depends on the issue.

• Examples: UML class builder, grapher, sunburst, etc.

Interactions

• Usually interactions modify the element or view, added
into them events or elements with a special behavior.

• Interactions subclasses needs the override the method
onElement: 
 

element @ RSDraggable.
element addInteraction: (RSPopup
 text: [:model| 'Class: ', model asString]).

Interactions

Layouts

• Roassal defines its own layouts.

• Grid layout, vertical, horizontal, tree, force layout.

• This layouts only execute one time.

Layouts

Spec, Inspector,
Iceberg and calypso

Spec
initializeWidgets
 | org |
 droplist := self instantiate: SpLabelledDropList.
 org := RPackage organizer.
 packages := (org packageNames
 select: [:s | '*Roassal3*' match: s]
 thenCollect: [:s | org packageNamed: s])
 sorted: [:a :b | a linesOfCode > b linesOfCode].
 totalSum := packages max: #linesOfCode.
 droplist
 label: 'Roassal Packages';
 items: packages;
 displayBlock: [:i | i name].

 chart := self instantiate: RoassalPresenter.
 pie := self instantiate: RoassalPresenter.
 droplist whenSelectedItemChangedDo: [:pkg |
 chart script: [:view |
 view when: TSExtentChangedEvent do: [
 view edges copy do: #remove.
 view elements copy do: #remove.

 self visualizeChart: view package: pkg
]
].
 pie script: [:view| self visualizePie: view package: pkg]].
 droplist dropList selectedIndex: 1.

Spec

Inspector
• View/canvas, elements/shapes can be inspected and visualized

in the 
 
 
 
 
 
 
 
 
 
 
 

Calypso

Iceberg

Future work

TODO

• Roassal and #(Pharo Calypso Iceberg VisualWorks).

• Documentation.

• Grapher, and other builders.

• Issues.

Try it it is free 
https://github.com/

ObjectProfile/Roassal3

Thanks

