
Guerrilla IT with Pharo

piotr@palacz.net

00 First Things First: Clarifications

Guerrilla in IT (be it with Pharo or without it) is just a metaphor.
It is not, among others:
•  An adaptation of Mao Zedong ideas on guerrilla tactics in practice

The enemy advances, we retreat; the enemy camps, we harass;
the enemy tires, we attack; the enemy retreats, we pursue.

•  An endorsement or an encouragement to incite or actually carry out any form of physical
 violence in the workplace.

•  And so on.

The Guerrilla in IT metaphor brings out some facets of the situation you are
likely to find yourself in when using Pharo in an Enterprise setting.
This setting has inherent challenges:
•  In some cases, mitigation could be attempted using Pharo, but it should not: there are better means

 for the mitigation.
•  In some other cases, it could be attempted fruitfully.
I am going to talk of both. Hence: Guerrilla IT with Pharo.

No animals were hurt when preparing this talk.

01 The Guerrilla Metaphor and IT
… As a description and as a strategy

02 Key Challenges and their Mitigations
… Featuring Guest Appearances by Requirements and Traceability

03 Enter Pharo into the Guerrilla
... Some examples and suggestions

04 Conclusions

Guerrilla warfare is a type of asymmetric engagement:
competition between opponents of unequal strength.

Asymmetric engagement takes place between belligerents
•  Whose relative military power differs significantly, or
•  Whose strategy and/or tactics differ significantly.

01 More about Guerrilla

These concepts have some elements of interest for us.

Guerrilla as an indication of the status quo at hand, including:
•  Existing asymmetry in strength (personnel, resources, etc.)

•  Contrast in the impacts of failure on respective sides

•  Actual differences in strategy and tactics (as in e.g. in corporate/PM culture).

01 Interesting Pieces

Guerrilla as an indication of a Strategy aiming to:
•  Magnify the impact of a small, mobile force on a larger, more
 cumbersome one

•  Not simply to defeat an enemy, but (also) to win popular support

As a Status Quo description:
•  Small or tiny teams
•  Relatively small budgets
•  Short timeframes
•  Dealing with defective requirements
•  Dealing with urgency, nervousness,…
•  … etc.

01 Guerrilla in IT

As a Strategy prescription:
•  Driving the solution rather than waiting for it to happen
•  Assuming broad SDLC responsibilities (from requirements to maintenance)
•  Being open to non-conventional solutions
•  Avoiding failure as a potentially lethal event
•  … etc.

02 Key Challenges in Enterprise Setting

On Requirements, because:
•  Reqs-related problems are common and wide-spread
•  Reqs are the first building block

•  Getting them wrong fundamentally dooms the effort

On Traceability, because:
•  It is either absent, misunderstood or mishandled
•  It ties the building blocks together, starting with Reqs

•  Getting it wrong sky-rockets the risk of failure

The key challenges in Enterprise-type projects center on:
•  Requirements
•  Traceability

02 Meanings of Traceability

Broad meaning (IEEE): the degree to which a relationship can be
established between two or more products of the development process,
especially products having a predecessor-successor or master-
subordinate relationship to one another. [IEEE-610]

Abstract/academic idea: Linking together subsequent models using
well-defined model transformations
(e.g., from Requirements Model to Execution and Testing Models)

Narrow meaning (most common):Tracing testing artefacts (incl. tests and their
results) back to specific requirements, in order to prove that all requirements have
been (a) implemented, and (b) positively tested.

02 Traceability: Various Manifestations

Manifestations of Traceability in-the-small:
1.  Non-existent (the default)
2.  Antagonistic and backward-looking (when things go sour)
3.  Collaborative and forward-looking (when doing well)

Manifestations of Traceability in-the-large:
1.  Absent (when contract language is deficient)
2.  Lip service (when things go OK)
3.  Antagonistic (when things start going bad)
4.  Nuclear Fusion (when litigation is looming)
5.  Backward-looking (almost always)

02 Uses of Pharo in the Guerrilla

(1)  Can Pharo be used outside its usual place as a construction
and testing toolkit?

(2) Can it be used to mitigate the Requirements Predicament?

(3) Can it be used to help establishing a collaborative,
 forward-looking traceability? Yes …

Yes …

Yes!

How all the are even possible? Yes

02 Possibilities

In the mainstream, the specification/design/construction/testing
overhead makes it unthinkable or at least impractical to use
its own tools to support the project outside of the construction proper.

This is not the case with Pharo:
•  Low cost/high speed of building assistive tooling makes
using Pharo to support the Guerrilla strategy

(a) conceivable and (b) feasible
•  Some types of that tooling (and associated simple practices introduced by it) p

roduce disproportionally good returns …

Real-Life Examples?

03 Examples: Some Rules of Thumb

Go for simple/low-cost improvements that have high impact potential
•  Transforming representation of relevant data/information
•  Making accessing and/or modifying this information easier
•  Making generation of derived information painless, simple and quick
•  … and so on

Note: making this or that here is not in the context of the target app!

Avoid:
•  Things that cannot be fixed (e.g., an SDLC broken beyond repair)
•  Replicating functions that can be had at even lower cost (e.g., an OSS issue tracker)
•  Functions with low impact potential (which may still happen to be cool)
•  … and so on

Real-Life Examples?

03 Examples: Dealing with Requirements
… Real-Life Case

•  Transform the Reqs away from the typical inedible forms
•  Republish them (or their relevant parts) in a digestible form
•  (e.g. visualization) in an easy-to-access form (e.g., web site/portal)
•  Provide simple query/reporting capabilities
•  Show people that this is easier for them (and sometimes fun)

•  Better traction with non-tech people
•  Better external visibility of the issues
•  More eyeballs -> better coverage -> better quality (eventually)
•  Opportunities:

•  To introduce structural corrections easily or painlessly
•  To divide-and-conquer -> faster turnover
•  To eliminate stop-and-go -> less friction

03 Example: Dealing with Requirements
… one of many ways Pharo 6 + Cytoscape + Object Model

Proposed Corpus Structure – Interactive Exploration

Initial Excel Corpus and its Issues

03 Examples: Towards Better Traceability
… Real-Life Case

•  Identify requirement types that can be handled by
 a DSL or the Interpreter pattern (typically, Business Rules are good candidate)
•  Reify the specs in a model
•  Provide for human-friendly self-description of that model
•  Provide self-descriptions for eyeballing (re-generation on
 change) and simple collection of feedback

•  Disambiguation of notoriously problematic areas (esp. Business Rules)
•  Early, pre-construction and pre-testing validation
 of essential Reqs with potential design impacts
•  Opportunities:

•  To introduce improved precision and cohesion of the language
•  To divide-and-conquer the space
•  To introduce ownership and accountability

ROW Rule '50XY Defined in REQUISITION_APPROVER':
 IF ((ROW has a value in FIELD: 'RA.ZZ_REQ_AD_HOC_APPR')
 AND (ROW has at LEAST ONE value in FIELDS:
 'RA.ZZ_REQ_APPROVER_1', 'RA.ZZ_REQ_APPROVER_2'))
 THEN (FAIL with MESSAGE: 'If Requisitions Ad Hoc Approver is identified,
 then other Requisitions approver levels must not be identified')

03 Towards Better Traceability
… Interpreter Pattern and Early Reqs Validation

ROW Rule 'Rule 3005 Defined in AP_APPROVER':
 IF ((FIELD 'AP.ZZ_AP_APPROVER_2' has value)
 AND (FIELD 'AP.EMAILID' is none of (case-insensitive) { ... 300 entries ... }))
 THEN (FAIL with MESSAGE: 'Each AP Approver 2 must have approved AUD15 form’)

Self-textual renderings …

… of rule class instances

Pharo 5/6 + GT + Seaside/Bootstrap + NeoCSV

04 Last Things Last: Conclusions

The Guerrilla Metaphor may:
•  Help you relate to real-life experiences when using Pharo in an Enterprise context
 and what that entails
•  Help you consider what concrete Agile could be when the tire hits the road
•  Stimulate devising other useful ways of using Pharo across all phases of the SDLC

The key thought is that with Pharo:
•  Low cost/high speed of building assistive tooling makes using Pharo to support
the Guerrilla strategy (a) conceivable and (b) feasible
•  Some types of that tooling (and associated simple practices introduced by it) c

an produce disproportionally good returns.

Thank you
Comments, suggestions, feedback, etc.: please email piotr@palacz.net

