
A promising approach for debugging remote promises

Max Leske
Software Composition Group, University of Bern

maxleske@gmail.com

Andrei Chiş Oscar Nierstrasz
Software Composition Group, University of Bern

{andrei, oscar}@inf.unibe.ch

Abstract
Promises are synchronization constructs that hide the com-
plexity of process synchronisation from the developer by pro-
viding a placeholder for the result of a potentially incomplete
computation performed in a concurrent process.

Promises evaluated by remote processes pose challenges
for debugging when the remote computation raises an ex-
ception. Current debuggers are either unaware that there is a
problem in the remote computation or give developers access
only to the context of the remote process. This does not allow
developers to interact at the same time with the process that
launched the promise and the remote process that executed
the promise’s computation.

To improve debugging of remote promises, in this paper
we propose a debugger interface that presents a unified view
of both the original and the remote process, by merging
the call chains of the two processes at the point where the
promise was created. We exemplify our approach, discuss
challenges for making it practical, and illustrate through an
initial prototype that it can improve debugging of exceptions
in remote promises.

Categories and Subject Descriptors D.2.5 [Software Engi-
neering]: Testing and Debugging—Debugging aids

Keywords remote debugging, remote promises, debuggers

1. Introduction
Developing concurrent programs is inherently more complex
than developing non-concurrent programs, mainly due to
the indeterminate order of access to shared resources and
the complexity of process synchronisation. Promises pro-
vide one concept to simplify development of concurrent pro-
grams [1, 9]. A promise hides the complexity of process syn-
chronisation from the developer by providing a placeholder
for the value the concurrent process will return. The place-

holder performs the necessary synchronisation when access
to the value of the promise process is requested. Promises
can execute their computation in a local slave process within
the same address space as the master process that launched
the promise or in a remote (slave) process running in another
address space, on the same machine or another one. We refer
to the latter as remote promises [12].

Due to the concurrent nature of promises, debugging them
is often as complex as debugging conventional concurrent
processes [13]. Furthermore, there exists little debugger sup-
port for promises in general and for promises involved with
remote processes in particular. A developer can proceed to
debug promises using generic techniques for debugging con-
current processes. One common approach is to simply open
a debugger on the slave process when an exception is raised,
as would be the case with a conventional process. Zhang et
al. [20] proposed an as-if-serial exception handling mecha-
nism that delivers exceptions to the same point as they would
be delivered if the program were executed sequentially, as
opposed to the point where the promise result is accessed.

While there exist approaches to improve exception han-
dling for promises, most conventional debuggers still present
only a view on the failed slave process, which is independent
of the master process in the system that started the promise.
This fails to capture the relationship between the master and
the slave.

For processes running in the same address space it is often
possible to reconstruct these relationships from contextual
information. This approach is used by the developer tools
of the Chrome browser to present asynchronous events in a
sequential view [6]. In a remote execution setup however,
processes are additionally separated by a communication
channel which makes it harder to discover the inter-process
relationships, and raises challenges related to remote com-
munication.

To improve debugging of remote promises we propose
a unified debugger interface that enables live debugging of
remote promises within the context of their master process.
To achieve this, when an exception is raised in the slave
process of the remote promise, instead of showing the call
stack of either the master or the slave, the debugger presents
to the developer the call stack of a single virtual process.
This virtual process merges the slave process with its master

at the point where the promise computation was started, to
give a serial view of events. It further removes from the call
stack frames related to communication with the slave.

To investigate the practical applicability of this idea we
developed an initial prototype in the Pharo programming
environment [4]. The prototype shows that our idea improves
debugging of remote promises, however, it requires support
from the virtual machine to reduce the memory footprint of
the approach. Furthermore, to avoid transferring the entire
stack of the slave process to the master, the current prototype
relies on proxies that require permanent communication with
the slave process.

The contributions of this paper are as follows:

• A model for debugging remote promises that provides
a unified debugging view on the master process starting
a remote promise, and the slave process executing the
remote promise;

• A report on the technical challenges for making the ap-
proach practically feasible;

• A prototype implementation of the approach.

2. Motivation
In this section we illustrate the problem of debugging excep-
tions in remote promises with a motivating example in which
a developer needs access to information stored in both the
master and the slave processes. We start by clarifying termi-
nology, introducing the example and discussing limitations
of current debuggers.

2.1 Terminology
Processes / threads Throughout this paper we use the term
process to mean green thread [18], unless stated otherwise.
Green threads are virtual processes that share their memory
and are located and scheduled in user space by a virtual
machine.

A remote process is a green thread running in a different
virtual machine, possibly executing on a different host. A
process consists of a linked list of activation records, called
a stack. We refer to an activation record also as a context or
a stack frame. Newly activated methods are put on the top of
the stack, so that the bottom context represents the starting
point of the process.

Promises The concept of promises was introduced by
Friedman et al. [9] for the Lisp programming language. Since
then promises have been extended and implemented in a va-
riety of ways so that today the definition depends on the
language and the specific use case. Liskov and Shrira for
example, extend promises to have a static type and support
for exceptions [12].

For this paper we define a promise as an eventual value,
the computation of which may execute in a slave process. Our
implementation of promises supports exception handling. A
remote promise is a promise that is executed by a different

virtual machine than its master process; the virtual machine
may run on a different host.

2.2 A Motivating Example
Static analysis of source code is an expensive task which, to
improve performance, can be run in a remote process. Our
example program is a service that performs static source
code analysis according to user-defined options. For simplic-
ity we assume that the source code has already been placed
in a local directory and that the options have already been
processed and can be accessed by the remote promise.

1 runAnalysisOn: inputPath
2 | absolutePath promise |
3 absolutePath := self absolutePathFrom: inputPath.
4 promise := self createPromiseFor: absolutePath.
5 self informUserToWait.
6 self checkResult: promise value

7 createPromiseFor: absolutePath
8 | closure promise |
9 closure := [self privateRunAnalysisOn: absolutePath].

10 promise := closure remotePromiseOn: self connection.
11 ↑ promise
12 openDebuggerOnError;
13 run;
14 yourself

15 self runAnalysisInPath: '/sourcecode'.
16 self runAnalysisInPath: 'sourcecode'.

Code for launching a static analysis task using a re-
mote promise is shown above. The method #runAnalysis-
On: must receive as parameter a relative or absolute path
to an existing directory, i.e., either “sourcecode” or “/pri-
vate repositories/sourcecode”. The program performs the
following steps:

1. Create an absolute path based on the inputPath param-
eter (line 3). When the input path is already absolute,
absolutePath will have the same value as inputPath.

2. Initialize the analysis as a remote promise with the abso-
lute path to the directory as input (lines 9 and 10).

3. Configure the promise to open a debugger when an excep-
tion occurs in the slave process (line 12).

4. Launch the remote promise which will attempt to access
the directory at the given path (line 13).

5. Inform the user that the analysis is executing (line 5).

6. Attempt to access the result of the analysis (line 6 –
#value) and block if the analysis is not finished.

When the remote promise attempts to access a directory
that does not exist it will fail. The question that a devel-
oper debugging this problem must answer is, why did the
directory not exist? Assuming that a directory exists at “/pri-
vate repositories/sourcecode” there are two locations for
possible failure in the example:

1. The original input was erroneous, as in line 15.
#absolutePathFrom: will not modify inputPath since
’/sourcecode’ is already an absolute path. The value of
absolutePath, which is passed to the slave process, is
’/sourcecode’.

2. The original input was correct (line 16) however, the
call to #absolutePathFrom: returned an erroneous path
i.e., ’/repositories/sourcecode’ instead of
’/private repositories/sourcecode’. The value of
absolutePath is then ’/repositories/sourcecode’.

Without access to the master process a developer cannot
determine whether the user supplied an invalid input or
#absolutePathFrom: perfomed an erroneous modification,
since the original input is not available in the debugger.

2.3 Limitations of current debuggers
Debuggers are a well-established tool in software devel-
opment. Unfortunately, many debuggers used by impera-
tive and object-oriented languages target debugging of non-
concurrent processes.

These debuggers ignore that there exist explicit and im-
plicit relationships between processes, such as the point
where a new process is created. These relationships are im-
portant when investigating problems related to multiple pro-
cesses. While it is possible in trivial cases to correctly guess
the control flow across process boundaries more complex
programs will leave developers at a loss as to what events
occurred before the creation of a failing process. Remote
processes connected to other environments through a com-
munication channel such as a TCP network or a serial line
further increase the complexity of debugging concurrent pro-
cesses and of determining the control flow of the program
across process boundaries.

Remote debuggers are specialised debuggers that can
connect to other environments, possibly located on a different
machine. They aim to improve remote debugging by enabling
a developer to interact live with a remote system from their
local environment. Nevertheless, like traditional debuggers,
remote debuggers do not provide developers with enough
information concerning the relationships between processes.
This is especially true for promises where we are not aware
of any model or implementation that specifically supports
the debugging of promises, with the exception of Zhang et
al. [20], who only deal with local and not remote promises.

2.4 Summary
Developers must be able to determine the relationships be-
tween the involved processes when debugging promises. De-
bugging remote promises adds an additional layer of com-
plexity due to the communication channel between the mas-
ter and slave processes. To the best of our knowledge no
implementation of remote debuggers exists that explicitly
supports the debugging of promises.

Figure 1. The master and slave processes before the slave
terminates or fails. (A) marks the context in which the slave
process was created, (B) the context which will access the
value of the promise.

Figure 2. A new virtual process is created by linking one
process to the other at the point where the slave process was
created (A).

3. A unified approach
To improve debugging of remote promises we propose that
when an interrupt occurs in the slave process, e.g., a break-
point of unhandled exception, the developer is presented with
a debugger that gives her access to the stacks of both the mas-
ter and the slave processes.

It is paramount for developers to know the exact order
of events when investigating a concurrency bug. Ergo, it is
important to know the location where the remote promise
was created. We follow the idea of Zhang et al. of presenting
to the user the remote exception as triggered from the code
location where the remote promise was created, instead of
the location where the value of the promise was accessed.

3.1 Virtual process
To give the developer a serialised and unified view on both
the master and the slave process we propose the use of a
virtual process. A virtual process presents the user with a
single call stack that merges the call stacks of the two actual
processes at the place where the promise was created. This
process is exemplified in Figures 1 and 2. Figure 1 shows
the state of the master and slave processes before the slave
process terminates or fails. When an exception is raised in the
slave a virtual process is created by placing the slave process
at the top of the stack, and the master process at the bottom
(Figure 2). Hence, the serialized view of events is preserved.

Figure 3. The new virtual process consists of both the mas-
ter and the slave processes, joined at (A). Contexts of the
master process after the context where the slave was created
are discarded from the virtual process.

Stack frames of the master process after the frame where
the slave was created are discarded from the virtual process
as is shown in Figure 3. When the virtual process is opened
in a debugger the developer is presented with only a single,
unified call stack.

In this paper we focus on the basic case of one master
and one slave process. In practice, however, processes often
form a hierarchy and each master is the slave of another
process. To incorporate this into the presented approach, the
virtual process can be extended to include master processes
recursively; our current implementation of virtual processes,
detailed in a related work [11], handles this scenario.

3.2 Remote Communication Through Proxies
Communication with the remote process should be as trans-
parent as possible. Proxies provide a convenient way of com-
municating with remote objects that does not require any
knowledge of the communication mechanism. In addition,
proxies enable live debugging of the remote process in cer-
tain languages. In Pharo for example, the values of variables
can be modified and the process can be resumed or even
restarted at an earlier point.

A different strategy would be to marshal the object graph
of the remote process and present this object graph with local
objects. Variables and objects could still be inspected but
restarting or resuming the process would not be possible.

To allow the slave process to be resumed, we base our
approach on remote communication through proxies.

3.3 Addressing the motivating example
In the motivating example from Section 2 the slave process
can fail as a result of line 16 if the absolute directory path
computed in line 3 and passed to the remote process does not
exist. To determine the root cause of the error a developer
needs to examine both the master and the slave processes
and determine if there was an error in computing the remote
path or if the path does not actually exist on the server. With
our approach this can be done in a single debugger.

Figure 4. The source of the exception in the slave process.
The dashed line indicates the point where the slave pro-
cess has been joined to its master. Note that the parameter
absolutePath contains an absolute path.

Figure 5. The context in which the promise was created.
The context of #runAnalysisOn:, through which the variable
inputPath can be accessed, is not part of the slave process.

Figures 4, 5 and 6 show three screenshots of the proposed
debugger opened after an exception was raised in the slave
process1.

The debugger shows the stack of the aforementioned
virtual process. The slave and the master process are joined
at the point indicated by the dashed line.

In Figure 4 the selected stack frame is the one where
the exception was raised and is part of the slave process.
The method parameter absolutePath holds the erroneous ab-
solute path that was passed to the slave process. Figure 5

1 A video showing this process is available at:
https://vimeo.com/maxleske/promisedebugger-iwst2016

https://vimeo.com/maxleske/promisedebugger-iwst2016

Figure 6. The original input inputPath contains only a
directory name. This information is only available to the
master process in the selected context.

shows the bottom context of the slave process. The context
of #runAnalysisOn: with the method parameter inputPath
is not part of the slave process. With only the slave process
available it would be impossible to decide whether inputPath
contained an erroneous value or if #absolutePathFrom: per-
formed an erroneous modification of inputPath to produce
the value of absolutePath.

The stack frame selected in Figure 6 is part of the mas-
ter process. The method parameter inputPath contains the
original input, a directory name without path delimiters
(“sourcode”). Since we know that a directory with that
name exists at “private repositories/sourcecode” the method
#absolutePathFrom: is clearly the source of the error and
should have supplied the prefix “private repositories” in-
stead of “repositories”.

By combining the information from the slave process
with that of the master process in a single debugger it is
possible determine the control flow of the program accross
process boundaries and identify the root cause of the problem
presented in the example.

4. Implementation
In this section we present our prototype implementation2 in
Pharo. We chose Pharo because processes can be manipu-
lated without the need to modify the virtual machine. Given
enough resources however, we believe that it is feasible to
implement our approach in any other programming language
with a stack-based implementation.

2 The prototype can be downloaded from the following URL:
http://scg.unibe.ch/download/promisedebugger/iwst16.zip

4.1 Promise interface
17 | promise |
18 closure := [self compute].
19 promise := closure remotePromiseOn:self connection.
20 promise
21 timeout: 5 seconds;
22 onTimeout: [self error: 'Computation timed out'];
23 defaultReturnValue: 0;
24 onError: [:error | self error: 'Error in computation'];
25 openDebuggerOnError;
26 run.

28 self inform: promise value.

A promise in our implementation contains a closure. The
message #remotePromiseOn: creates a promise from a clo-
sure. Sending #run to the promise evaluates the closure in
the slave process. The promise can be redeemed by sending
the #value message, which returns the computed result. If
the result is not yet available #value will block until it is
ready. Our prototype also provides additional configuration
options:

• #timeout: and #onTimeout: control the maximum run
time of the promise and an optional action upon reaching
this timeout.

• #defaultReturnValue: specifies the value to return in
case of an exception. The default is nil.

• #openDebuggerOnError opens a promise debugger au-
tomatically when an exception is signalled and not han-
dled. The default is to return the value specified by
#defaultReturnValue:.

4.2 Creating a serialised view of events
In Pharo a process is represented by a linked list of contexts,
as shown in Figure 7. The standard debugger UI traverses this
list of contexts to render it. A simple approach to presenting
a serialised view of multiple processes in the standard debug-
ger is therefore to manipulate the call chain links. The sender
field of the bottom context (the starting point of the process)
is always nil. We can create a single virtual process out of
two separate processes (Figure 1) by making the top context
of one process the sender of the bottom context of the other,
i.e., we store a reference to the top context of another process
in the sender field as depicted in Figure 2.

Manipulating the sender field of other contexts allows us
to hide the contexts that are internal to the promise creation.
These hidden contexts must not be lost, as they are still re-
quired e.g., for correct process termination, but hiding them
simplifies the view. The debugger implementation must take
care to restore the original context links whenever a hidden
process would be accessed in the original process. The fol-
lowing debugger actions can make such a modification nec-
essary:

• resuming the process;
• restarting the process at any of the visible contexts;

http://scg.unibe.ch/download/promisedebugger/iwst16.zip

Figure 7. UML diagram of processes and their chain of
contexts.

• terminating the process;
• stepping over one or more instructions;

Contexts must be relinked in these cases so that return val-
ues are correctly passed along the context chain and to ensure
the evaluation of all unwind constructs [8], i.e., constructs re-
quiring a cleanup activity during process termination, such
as closing an open file.

4.3 Discerning live and dead contexts
A dead context is one that must not be executed by the virtual
machine. While it is possible to execute arbitrary contexts,
it may not be possible to guarantee a state in which their
execution will be successful, such as for copies of contexts
whose originals have already terminated.

All dead contexts in the master process must be treated as
such in the debugger while, at the same time, all live contexts
must support the usual debugger actions. We therefore need
a way to discern the liveness of a context on a per instance
basis. The current debugger determines liveness at the pro-
cess level, regardless of the context in focus. We extend the
debugger and override the liveness check to be performed
on the context level and take into account the process, i.e.,
master or slave, to which a given context belongs.

4.4 Saving the master process
Upon creation of a promise we create a copy of the master
process. This is necessary because we cannot predict how the
promise will be used. There are different possibilities:

1. the promise is redeemed at a point in the future (possibly
within a different method),

2. the promise is redeemed in a method earlier in the stack
(e.g., by accessing a field that was written in the preceding
method invocation),

3. the promise is not redeemed in the master process (possi-
bly in another process),

4. the promise is redeemed in the master process but with a
timeout, or

5. the promise is never redeemed.

Only in the first case is the context that created the
promise guaranteed to be live during the lifetime of the
promise itself. For the first case we could simply record a
pointer to the context in which the promise was created. That
context will remain live as long as the master process is wait-
ing on the promise. This is not true for the second case. The
context we recorded still exists but has been released, i.e., its
internal state has been cleared. Even worse, as in case three,
the master process may exit without waiting on the slave
process at all. Cases four and five are special cases of case
three.

To accommodate all of these cases we must create a copy
of the master process. The copy of a process is simply the
copy of all the contexts in the call chain. By creating a copy
we ensure that all contexts retain the internal representation
they had at the point of the copy creation.

4.5 Remote communication
The communication facilities we use to debug the remote pro-
cess are provided by Seamless [15]. Seamless is a framework
for distributed computing that provides high adaptability by
separating the different aspects of distributed communica-
tion, such as connection and authentication strategies, into
modules. To provide transparent communication with remote
processes, Seamless can use proxies, which is what our im-
plementation relies upon.

While our promise implementation is independent of the
location of execution (the promise itself is always a local
construct) working with remote objects requires extra effort.
There are two locations where the details of remote commu-
nication become relevant to us. The first is the case where an
exception occurs in the remote process. We must ensure that
all the information we need will be retained and that we send
back the correct proxies. The second point is during the setup
of the debugger where we have to create local objects for cer-
tain proxies for performance reasons. The proxies concerned
are those that receive many messages due to UI interaction.

Apart from these two framework-dependent points our im-
plementation is independent of the remote communications
facility used.

4.6 Handling exceptions
Our promise implementation employs an internal exception
handler that catches all unhandled exceptions in the slave pro-
cess. We use this handler to prepare the default return value
and the internal state for the case in which the developer
requests to open a debugger on the intercepted exception.
When the intercepted exception belongs to a slave process
we also create local copies of all the contexts in that process.
This is necessary to prevent the excessive number of mes-

sages sent to contexts from the UI from being sent to the
remote image.

5. Challenges for a practical solution
The manipulations we perform on processes come at a cost.
Additional costs when debugging are acceptable as long as
the tools remain subjectively usable. It is important however,
that these additional costs not lead to a performance degrada-
tion in the general case.

5.1 Performance overhead
The creation of a promise incurs a performance penalty
largely attributable to copying of the master process. There
are two sources that contribute to the penalty:

• creating and copying contexts
• context reification

The first point is obvious: for every context in the call
chain a new instance of context must be created and the
values of the original context must be copied to the new
instance.

The second point however is more complex. In modern
Smalltalk VMs an activation record is only represented as a
context on demand [14]. One advantage of this is that fewer
object space manipulations are necessary when activating a
method, and not all activation records need to be garbage-
collected [14]. In essence, process execution speed is im-
proved by reifying contexts on demand. The downside to
this approach is that context reification itself becomes more
complex and therefore slower. Creating a copy of a context
is a request that triggers reification [14]. Creating a copy of
a context that has not yet been reified therefore entails the
creation of two contexts, internal management by the VM,
and the actual copy operation.

5.2 Memory overhead
The copy of a context is shallow, meaning that primitive val-
ues of the context are copied as well as first level references.
The minimum size of a context in a 32-bit Pharo VM with
Spur memory manager is 32 bytes consisting of the object
header (12 bytes) and the instance variables sender, receiver,
method, closureOrNil, pc and stackp (4 bytes each). In addi-
tion, contexts represent the method stack, whose size depends
on the activated method and includes method arguments, tem-
porary variables and the return value (4 bytes each). The
memory overhead of copying contexts is therefore linear to
the number of contexts. Given a stack size of 1000 contexts
(a rather large process stack) with an average method stack
size of 7 (3 method parameters, three temporary variables)
the memory required for the copy amounts to 39 kilo bytes.

Apart from requiring additional memory, storing contexts
may prevent objects referenced by these contexts from being
collected by the garbage collector. The virtual machine may
have to allocate more memory to compensate for the memory

blocked by these objects which in turn may lead to problems
if not enough memory is available.

6. Related work
The need for debuggers that make use of the relationships
between processes has been recognized as early as 1986
[5, 19]. One possibility of giving developers access to the
inter-process relationships are traces, which have been used
for sequential debugging since 1969 [2]. Traces provide
serialized records of the events that have occurred during the
execution of a program. Visual concurrent debuggers use the
information from traces to present visualisations to the user
that attempt to highlight dependencies between processes.
Both trace debugging and visual debugging of concurrent
processes have their strengths but do not provide support for
live debugging.

Remote debuggers exist for many languages and plat-
forms. The GNU debugger (GDB) for instance can be con-
figured to communicate with a remote target via a serial or
network interface [17]. In Smalltalk derivatives a number of
remote debuggers have been implemented [3, 7, 10]. One of
the most recent of these is Mercury [16]. Mercury does nei-
ther specifically target the problem of debugging concurrent
processes nor that of debugging promises.

Zhang et al. proposed a serialised view of the events of
both the slave process and its master [20]. In contrast to our
approach the serialised view is not created on demand but
is a side-effect of their stack-splitting strategy: the virtual
machine creates a promise by copying the current thread
and marking the current activation record as the bottom of
the stack. The slave process thus contains all the activation
records from before its creation (the mark is reversible).
Unlike our promise implementation, theirs does not support
remote execution.

6.1 Overview of live debuggers
Too many programming languages exist too give an exhaus-
tive overview of live debuggers in this paper (Leske [11]
provides a comprehensive list of live debuggers and concur-
rency related features). Hence, we focus on debuggers that
are used by many developers, and therefore represent the
state of the art for a large number of users, or can display the
history of promises. Table 1 shows a brief list of live debug-
gers and their support for showing the history of promises,
both locally and remotely.

The table includes the following debuggers: Java Debug-
ger Interface3 (Java), Visual Studio debugger4 (C# , C++,
Visual Basic .NET, JavaScript), GDB5 (C), Chrome de-
velopment tools6 (JavaScript), Scala asynchronous debug-

3 http://docs.oracle.com/javase/7/docs/jdk/api/jpda/jdi/
4 https://msdn.microsoft.com/en-us/library/sc65sadd.aspx
5 https://www.gnu.org/software/gdb/
6 https://developer.chrome.com/devtools

http://docs.oracle.com/javase/7/docs/jdk/api/jpda/jdi/
https://msdn.microsoft.com/en-us/library/sc65sadd.aspx
https://www.gnu.org/software/gdb/
https://developer.chrome.com/devtools

promise
history

remote
promise
history

Java Debugger Interface
(JNI) · ·

Visual Studio debugger · ·

GDB · ·

Chrome development
tools

X ·

Scala asynchronous
debugger X ·

Pharo debugger · ·

Pharo promise debugger X X

Table 1. Support for displaying the promise history in live
debuggers.

ger7 (Scala). Only the Chrome development tools and the
Scala asynchronous debugger can display the history of local
promises. What this shows is that the concept is an important
idiom in the respective languages, more important at least
than in other languages. Our promise debugger is the sole
debugger to support promise history for remote promises.

7. Conclusions and future work
Debugging exceptions in remote promises is a challenging
task as developers have to reason about both the process that
started the promise and the process that executed the promise.
To address this aspect, this paper proposed the use of a single
virtual process that links the two processes at the point where
the promise was created. We integrated this approach into a
concrete debugger from the Pharo IDE.

We are currently working on further improving the visu-
alisation of the different parts of the virtual process, so that
developers can more easily tell the difference between master
and slave processes. We are also looking at incorporating sup-
port for showing all processes that are waiting on the promise
that is being debugged.

The idea of visualising process relationships is interesting
enough to experiment with a more general implementation
that would allow to see these relationships for any given pro-
cess, not just for promises. Such an implementation would
require a setting to turn it on and off however, to prevent
performance degradation. The virtual machine can provide
facilities to mitigate performance degradation.

7 http://scala-ide.org/docs/current-user-doc/features/

async-debugger/index.html

There is currently work being done on an official imple-
mentation of a remote debugger for Pharo and we are dis-
cussing the idea of bringing the serialised view of master and
slave processes to this tool.

Acknowledgments
We gratefully acknowledge the financial support of the Swiss
National Science Foundation for the project “Agile Software
Analysis” (SNSF project No. 200020-162352, Jan 1, 2016 -
Dec. 30, 2018).

References
[1] H. C. Baker, Jr. and C. Hewitt. The incremental garbage

collection of processes. SIGPLAN Not., 12(8):55–59, Aug.
1977. ISSN 0362-1340. doi: 10.1145/872734.806932. URL
http://doi.acm.org/10.1145/872734.806932.

[2] R. M. Balzer. Exdams: Extendable debugging and monitoring
system. In Proceedings of the May 14-16, 1969, Spring Joint
Computer Conference, AFIPS ’69 (Spring), pages 567–580,
New York, NY, USA, 1969. ACM. doi: 10.1145/1476793.
1476881. URL http://doi.acm.org/10.1145/1476793.

1476881.

[3] J. K. Bennett. The design and implementation of distributed
Smalltalk, volume 22. ACM, 1987.

[4] A. Black, S. Ducasse, O. Nierstrasz, D. Pollet, D. Cassou,
and M. Denker. Pharo by Example. Square Bracket As-
sociates, 2009. ISBN 978-3-9523341-4-0. URL http://

pharobyexample.org.

[5] T. Cargill. Pi: A case study in object-oriented programming.
In Proceedings OOPSLA ’86, ACM SIGPLAN Notices, vol-
ume 21, pages 350–360, Nov. 1986.

[6] P. Chen. Debugging asynchronous JavaScript with Chrome
DevTools, July 2014. http://www.html5rocks.com/en/

tutorials/developertools/async-call-stack/.

[7] K. Clohessy, B. Barry, and P. Tanner. New complexities in
the embedded world - the OTI approach. In Object-Oriented
Technologys, pages 472–478. Springer, 1997.

[8] D. P. Friedman and C. T. Haynes. Constraining control. In
Proceedings of the 12th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages, POPL ’85, pages
245–254, New York, NY, USA, 1985. ACM. ISBN 0-89791-
147-4. doi: 10.1145/318593.318654. URL http://doi.acm.

org/10.1145/318593.318654.

[9] D. P. Friedman and D. S. Wise. Aspects of applicative pro-
gramming for file systems (preliminary version). SIGSOFT
Softw. Eng. Notes, 2(2):41–55, Mar. 1977. ISSN 0163-5948.
doi: 10.1145/390019.808310. URL http://doi.acm.org/

10.1145/390019.808310.

[10] E. Keremitsis and I. J. Fuller. HP Distributed Smalltalk: A tool
for developing distributed applications. HEWLETT PACKARD
JOURNAL, 46:85–85, 1995.

[11] M. Leske. Improving live debugging of concurrent threads.
Masters thesis, University of Bern, Aug. 2016. URL http:

//scg.unibe.ch/archive/masters/Lesk16a.pdf.

http://scala-ide.org/docs/current-user-doc/features/async-debugger/index.html
http://scala-ide.org/docs/current-user-doc/features/async-debugger/index.html
http://doi.acm.org/10.1145/872734.806932
http://doi.acm.org/10.1145/1476793.1476881
http://doi.acm.org/10.1145/1476793.1476881
http://pharobyexample.org
http://pharobyexample.org
http://www.html5rocks.com/en/tutorials/developertools/async-call-stack/
http://www.html5rocks.com/en/tutorials/developertools/async-call-stack/
http://doi.acm.org/10.1145/318593.318654
http://doi.acm.org/10.1145/318593.318654
http://doi.acm.org/10.1145/390019.808310
http://doi.acm.org/10.1145/390019.808310
http://scg.unibe.ch/archive/masters/Lesk16a.pdf
http://scg.unibe.ch/archive/masters/Lesk16a.pdf

[12] B. Liskov and L. Shrira. Promises: Linguistic support for
efficient asynchronous procedure calls in distributed systems.
In Proceedings of the ACM SIGPLAN 1988 Conference on
Programming Language Design and Implementation, PLDI
’88, pages 260–267, New York, NY, USA, 1988. ACM. ISBN
0-89791-269-1. doi: 10.1145/53990.54016. URL http://

doi.acm.org/10.1145/53990.54016.

[13] C. E. McDowell and D. P. Helmbold. Debugging concurrent
programs. ACM Computing Surveys, 21(4):593–622, Dec.
1989.

[14] E. Miranda. Context management in VisualWorks 5i. Techni-
cal report, ParcPlace Division, CINCOM, Inc., 1999.

[15] N. Papoulias. Remote Debugging and Reflection in Resource
Constrained Devices. PhD thesis, Université des Sciences et
Technologie de Lille-Lille I, 2013.

[16] N. Papoulias, N. Bouraqadi, L. Fabresse, S. Ducasse, and
M. Denker. Mercury: Properties and design of a remote debug-
ging solution using reflection. Journal of Object Technology,
page 36, 2015.

[17] R. Stallman, R. Pesch, S. Shebs, et al. Debugging with GDB.
Free Software Foundation, 51:02110–1301, 2002.

[18] M. Sung, S. Kim, S. Park, N. Chang, and H. Shin. Compar-
ative performance evaluation of Java threads for embedded
applications: Linux thread vs. Green thread. Informa-
tion Processing Letters, 84(4):221 – 225, 2002. ISSN
0020-0190. doi: 10.1016/S0020-0190(02)00286-7. URL
http://www.sciencedirect.com/science/article/

pii/S0020019002002867.

[19] P. S. Utter and C. M. Pancake. Advances in Parallel Debuggers:
New Approaches to Visualization, volume 18. Cornell Theory
Center, Cornell University, 1989.

[20] L. Zhang, C. Krintz, and P. Nagpurkar. Supporting excep-
tion handling for futures in Java. In Proceedings of the
5th International Symposium on Principles and Practice of
Programming in Java, PPPJ ’07, pages 175–184, New York,
NY, USA, 2007. ACM. ISBN 978-1-59593-672-1. doi:
10.1145/1294325.1294349. URL http://doi.acm.org/10.

1145/1294325.1294349.

http://doi.acm.org/10.1145/53990.54016
http://doi.acm.org/10.1145/53990.54016
http://www.sciencedirect.com/science/article/pii/S0020019002002867
http://www.sciencedirect.com/science/article/pii/S0020019002002867
http://doi.acm.org/10.1145/1294325.1294349
http://doi.acm.org/10.1145/1294325.1294349

	Introduction
	Motivation
	Terminology
	A Motivating Example
	Limitations of current debuggers
	Summary

	A unified approach
	Virtual process
	Remote Communication Through Proxies
	Addressing the motivating example

	Implementation
	Promise interface
	Creating a serialised view of events
	Discerning live and dead contexts
	Saving the master process
	Remote communication
	Handling exceptions

	Challenges for a practical solution
	Performance overhead
	Memory overhead

	Related work
	Overview of live debuggers

	Conclusions and future work

